Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

KSR and CNK: two scaffolds regulating RAS-mediated RAF activation

Abstract

The RAS-RAF-MEK-extracellular-regulated kinase (RAS/ERK) pathway is a major intracellular route used by metazoan cells to channel to downstream targets a diverse array of signals, including those controlling cell proliferation and survival. Recent findings suggest that the pathway is assembled by specific scaffolding proteins that in turn regulate the efficiency, the location and/or the duration of signal transmission. Here, through the angle of studies conducted in Drosophila and C. elegans, we present two such proteins, the kinase suppressor of RAS (KSR) and connector enhancer of KSR (CNK) scaffolds, and highlight their implication in a novel mechanism regulating RAS-mediated RAF activation. Based on recent findings, we discuss the possibility that KSR, a RAF-like protein, does not solely act as a scaffold, but directly induces RAF catalytic function by a kinase-independent mechanism apparently shared by RAF-like proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Anselmo AN, Bumeister R, Thomas JM, White MA . (2002). Critical contribution of linker proteins to Raf kinase activation. J Biol Chem 277: 5940–5943.

    Article  CAS  PubMed  Google Scholar 

  • Baonza A, Roch F, Martin-Blanco E . (2000). DER signaling restricts the boundaries of the wing field during Drosophila development. Proc Natl Acad Sci USA 97: 7331–7335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell B, Xing H, Yan K, Gautam N, Muslin AJ . (1999). KSR-1 binds to G-protein betagamma subunits and inhibits beta gamma-induced mitogen-activated protein kinase activation. J Biol Chem 274: 7982–7986.

    Article  CAS  PubMed  Google Scholar 

  • Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR . (2006). Emerging roles of pseudokinases. Trends Cell Biol 16: 443–452.

    Article  CAS  PubMed  Google Scholar 

  • Brtva TR, Drugan JK, Ghosh S, Terrell RS, Campbell-Burk S, Bell RM et al. (1995). Two distinct Raf domains mediate interaction with Ras. J Biol Chem 270: 9809–9812.

    Article  CAS  PubMed  Google Scholar 

  • Bumeister R, Rosse C, Anselmo A, Camonis J, White MA . (2004). CNK2 couples NGF signal propagation to multiple regulatory cascades driving cell differentiation. Curr Biol 14: 439–445.

    Article  CAS  PubMed  Google Scholar 

  • Cabernard C, Affolter M . (2005). Distinct roles for two receptor tyrosine kinases in epithelial branching morphogenesis in Drosophila. Dev Cell 9: 831–842.

    Article  CAS  PubMed  Google Scholar 

  • Cacace AM, Michaud NR, Therrien M, Mathes K, Copeland T, Rubin GM et al. (1999). Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression. Mol Cell Biol 19: 229–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chadee DN, Xu D, Hung G, Andalibi A, Lim DJ, Luo Z et al. (2006). Mixed-lineage kinase 3 regulates B-Raf through maintenance of the B-Raf/Raf-1 complex and inhibition by the NF2 tumor suppressor protein. Proc Natl Acad Sci USA 103: 4463–4468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL et al. (2003). Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17: 1263–1293.

    Article  CAS  PubMed  Google Scholar 

  • Chang HC, Rubin GM . (1997). 14-3-3 epsilon positively regulates Ras-mediated signaling in Drosophila. Genes Dev 11: 1132–1139.

    Article  CAS  PubMed  Google Scholar 

  • Channavajhala PL, Rao VR, Spaulding V, Lin LL, Zhang YG . (2005). hKSR-2 inhibits MEKK3-activated MAP kinase and NF-kappaB pathways in inflammation. Biochem Biophys Res Commun 334: 1214–1218.

    Article  CAS  PubMed  Google Scholar 

  • Channavajhala PL, Wu L, Cuozzo JW, Hall JP, Liu W, Lin LL et al. (2003). Identification of a novel human kinase supporter of Ras (hKSR-2) that functions as a negative regulator of Cot (Tpl2) signaling. J Biol Chem 278: 47089–47097.

    Article  CAS  PubMed  Google Scholar 

  • Chiloeches A, Mason CS, Marais R . (2001). S338 phosphorylation of Raf-1 is independent of phosphatidylinositol 3-kinase and Pak3. Mol Cell Biol 21: 2423–2434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong H, Lee J, Guan KL . (2001). Positive and negative regulation of Raf kinase activity and function by phosphorylation. EMBO J 20: 3716–3727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong H, Vikis HG, Guan KL . (2003). Mechanisms of regulating the Raf kinase family. Cell Signal 15: 463–469.

    Article  CAS  PubMed  Google Scholar 

  • Colon-Gonzalez F, Kazanietz MG . (2006). C1 domains exposed: from diacylglycerol binding to protein-protein interactions. Biochim Biophys Acta 1761: 827–837.

    Article  CAS  PubMed  Google Scholar 

  • Cutler Jr RE, Stephens RM, Saracino MR, Morrison DK . (1998). Autoregulation of the Raf-1 serine/threonine kinase. Proc Natl Acad Sci USA 95: 9214–9219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dard N, Peter M . (2006). Scaffold proteins in MAP kinase signaling: more than simple passive activating platforms. Bioessays 28: 146–156.

    Article  CAS  PubMed  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417: 949–954.

    Article  CAS  PubMed  Google Scholar 

  • Denouel-Galy A, Douville EM, Warne PH, Papin C, Laugier D, Calothy G et al. (1998). Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr Biol 8: 46–55.

    Article  CAS  PubMed  Google Scholar 

  • Dhillon AS, Kolch W . (2002). Untying the regulation of the Raf-1 kinase. Arch Biochem Biophys 404: 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Dhillon AS, Meikle S, Yazici Z, Eulitz M, Kolch W . (2002a). Regulation of Raf-1 activation and signalling by dephosphorylation. EMBO J 21: 64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhillon AS, Pollock C, Steen H, Shaw PE, Mischak H, Kolch W . (2002b). Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of serine 259. Mol Cell Biol 22: 3237–3246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douziech M, Roy F, Laberge G, Lefrancois M, Armengod AV, Therrien M . (2003). KSR is a scaffold required for activation of the ERK/MAPK module. EMBO J 22: 5068–5078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douziech M, Sahmi M, Laberge G, Therrien M . (2006). A KSR/CNK complex mediated by HYP, a novel SAM domain-containing protein, regulates RAS-dependent RAF activation in Drosophila. Genes Dev 20: 807–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumaz N, Marais R . (2003). Protein kinase A blocks Raf-1 activity by stimulating 14-3-3 binding and blocking Raf-1 interaction with Ras. J Biol Chem 278: 29819–29823.

    Article  CAS  PubMed  Google Scholar 

  • English J, Pearson G, Wilsbacher J, Swantek J, Karandikar M, Xu S et al. (1999). New insights into the control of MAP kinase pathways. Exp Cell Res 253: 255–270.

    Article  CAS  PubMed  Google Scholar 

  • Fabian JR, Daar IO, Morrison DK . (1993). Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol Cell Biol 13: 7170–7179.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farrar MA, Alberol I, Perlmutter RM . (1996). Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383: 178–181.

    Article  CAS  PubMed  Google Scholar 

  • Friedman A, Perrimon N . (2006). A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature 444: 230–234.

    Article  CAS  PubMed  Google Scholar 

  • Fritz RD, Radziwill G . (2005). The scaffold protein CNK1 interacts with the angiotensin II type 2 receptor. Biochem Biophys Res Commun 338: 1906–1912.

    Article  CAS  PubMed  Google Scholar 

  • Garnett MJ, Rana S, Paterson H, Barford D, Marais R . (2005). Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell 20: 963–969.

    Article  CAS  PubMed  Google Scholar 

  • Gollob JA, Wilhelm S, Carter C, Kelley SL . (2006). Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin Oncol 33: 392–406.

    Article  CAS  PubMed  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T . (1988). The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52.

    Article  CAS  PubMed  Google Scholar 

  • Hu CD, Kariya K, Tamada M, Akasaka K, Shirouzu M, Yokoyama S et al. (1995). Cysteine-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras. J Biol Chem 270: 30274–30277.

    Article  CAS  PubMed  Google Scholar 

  • Huwiler A, Brunner J, Hummel R, Vervoordeldonk M, Stabel S, van den Bosch H et al. (1996). Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc Natl Acad Sci USA 93: 6959–6963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs D, Glossip D, Xing H, Muslin AJ, Kornfeld K . (1999). Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev 13: 163–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe AB, Aspenstrom P, Hall A . (2004). Human CNK1 acts as a scaffold protein, linking Rho and Ras signal transduction pathways. Mol Cell Biol 24: 1736–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe AB, Hall A, Schmidt A . (2005). Association of CNK1 with Rho guanine nucleotide exchange factors controls signaling specificity downstream of Rho. Curr Biol 15: 405–412.

    Article  CAS  PubMed  Google Scholar 

  • Jaumot M, Hancock JF . (2001). Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene 20: 3949–3958.

    Article  CAS  PubMed  Google Scholar 

  • Kao G, Tuck S, Baillie D, Sundaram MV . (2004). C. elegans SUR-6/PR55 cooperates with LET-92/protein phosphatase 2A and promotes Raf activity independently of inhibitory Akt phosphorylation sites. Development 131: 755–765.

    Article  CAS  PubMed  Google Scholar 

  • Kolch W . (2000). Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351 (Part 2): 289–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolch W . (2005). Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6: 827–837.

    Article  CAS  PubMed  Google Scholar 

  • Kornfeld K, Hom DB, Horvitz HR . (1995). The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell 83: 903–913.

    Article  CAS  PubMed  Google Scholar 

  • Kremer NE, D'Arcangelo G, Thomas SM, DeMarco M, Brugge JS, Halegoua S . (1991). Signal transduction by nerve growth factor and fibroblast growth factor in PC12 cells requires a sequence of src and ras actions. J Cell Biol 115: 809–819.

    Article  CAS  PubMed  Google Scholar 

  • Krugmann S, Anderson KE, Ridley SH, Risso N, McGregor A, Coadwell J et al. (2002). Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol Cell 9: 95–108.

    Article  CAS  PubMed  Google Scholar 

  • Laberge G, Douziech M, Therrien M . (2005). Src42 binding activity regulates Drosophila RAF by a novel CNK-dependent derepression mechanism. EMBO J 24: 487–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanigan TM, Liu A, Huang YZ, Mei L, Margolis B, Guan KL . (2003). Human homologue of Drosophila CNK interacts with Ras effector proteins Raf and Rlf. FASEB J 17: 2048–2060.

    Article  CAS  PubMed  Google Scholar 

  • Lemmon MA . (2004). Pleckstrin homology domains: not just for phosphoinositides. Biochem Soc Trans 32: 707–711.

    Article  CAS  PubMed  Google Scholar 

  • Li W, Skoulakis EM, Davis RL, Perrimon N . (1997). The Drosophila 14-3-3 protein Leonardo enhances Torso signaling through D-Raf in a Ras 1-dependent manner. Development 124: 4163–4171.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Ilasaca MA, Bernabe-Ortiz JC, Na SY, Dzau VJ, Xavier RJ . (2005). Bioluminescence resonance energy transfer identify scaffold protein CNK1 interactions in intact cells. FEBS Lett 579: 648–654.

    Article  CAS  PubMed  Google Scholar 

  • Luo Z, Diaz B, Marshall MS, Avruch J . (1997). An intact Raf zinc finger is required for optimal binding to processed Ras and for ras-dependent Raf activation in situ. Mol Cell Biol 17: 46–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Z, Tzivion G, Belshaw PJ, Vavvas D, Marshall M, Avruch J . (1996). Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature 383: 181–185.

    Article  CAS  PubMed  Google Scholar 

  • Manning G, Plowman GD, Hunter T, Sudarsanam S . (2002). Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27: 514–520.

    Article  CAS  PubMed  Google Scholar 

  • Marais R, Light Y, Paterson HF, Marshall CJ . (1995). Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 14: 3136–3145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ . (1997). Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 272: 4378–4383.

    Article  CAS  PubMed  Google Scholar 

  • Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R . (1999). Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J 18: 2137–2148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matheny SA, Chen C, Kortum RL, Razidlo GL, Lewis RE, White MA . (2004). Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature 427: 256–260.

    Article  CAS  PubMed  Google Scholar 

  • Michaud NR, Therrien M, Cacace A, Edsall LC, Spiegel S, Rubin GM et al. (1997). KSR stimulates Raf-1 activity in a kinase-independent manner. Proc Natl Acad Sci USA 94: 12792–12796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison DK, Heidecker G, Rapp UR, Copeland TD . (1993). Identification of the major phosphorylation sites of the Raf-1 kinase. J Biol Chem 268: 17309–17316.

    Article  CAS  PubMed  Google Scholar 

  • Mott HR, Carpenter JW, Zhong S, Ghosh S, Bell RM, Campbell SL . (1996). The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site. Proc Natl Acad Sci USA 93: 8312–8317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller J, Cacace AM, Lyons WE, McGill CB, Morrison DK . (2000). Identification of B-KSR1, a novel brain-specific isoform of KSR1 that functions in neuronal signaling. Mol Cell Biol 20: 5529–5539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller J, Ory S, Copeland T, Piwnica-Worms H, Morrison DK . (2001). C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol Cell 8: 983–993.

    Article  CAS  PubMed  Google Scholar 

  • Muslin AJ, Tanner JW, Allen PM, Shaw AS . (1996). Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84: 889–897.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen A, Burack WR, Stock JL, Kortum R, Chaika OV, Afkarian M et al. (2002). Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. Mol Cell Biol 22: 3035–3045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nourry C, Grant SG, Borg JP . (2003). PDZ domain proteins: plug and play!. Sci STKE (2003: re7).

    Article  Google Scholar 

  • Ohmachi M, Rocheleau CE, Church D, Lambie E, Schedl T, Sundaram MV . (2002). C. elegans ksr-1 and ksr-2 have both unique and redundant functions and are required for MPK-1 ERK phosphorylation. Curr Biol 12: 427–433.

    Article  CAS  PubMed  Google Scholar 

  • Ohtakara K, Nishizawa M, Izawa I, Hata Y, Matsushima S, Taki W et al. (2002). Densin-180, a synaptic protein, links to PSD-95 through its direct interaction with MAGUIN-1. Genes Cells 7: 1149–1160.

    Article  CAS  PubMed  Google Scholar 

  • Ory S, Zhou M, Conrads TP, Veenstra TD, Morrison DK . (2003). Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr Biol 13: 1356–1364.

    Article  CAS  PubMed  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M et al. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22: 153–183.

    CAS  PubMed  Google Scholar 

  • Qiao F, Bowie JU . (2005). The many faces of SAM. Sci STKE 2005: re7.

    Article  PubMed  Google Scholar 

  • Rabizadeh S, Xavier RJ, Ishiguro K, Bernabeortiz J, Lopez-Ilasaca M, Khokhlatchev A et al. (2004). The scaffold protein CNK1 interacts with the tumor suppressor RASSF1A and augments RASSF1A-induced cell death. J Biol Chem 279: 29247–29254.

    Article  CAS  PubMed  Google Scholar 

  • Robinson MJ, Harkins PC, Zhang J, Baer R, Haycock JW, Cobb MH et al. (1996). Mutation of position 52 in ERK2 creates a nonproductive binding mode for adenosine 5′-triphosphate. Biochemistry 35: 5641–5646.

    Article  CAS  PubMed  Google Scholar 

  • Rocheleau CE, Ronnlund A, Tuck S, Sundaram MV . (2005). Caenorhabditis elegans CNK-1 promotes Raf activation but is not essential for Ras/Raf signaling. Proc Natl Acad Sci USA 102: 11757–11762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roignant JY, Hamel S, Janody F, Treisman JE . (2006). The novel SAM domain protein Aveugle is required for Raf activation in the Drosophila EGF receptor signaling pathway. Genes Dev 20: 795–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rommel C, Radziwill G, Lovric J, Noeldeke J, Heinicke T, Jones D et al. (1996). Activated Ras displaces 14-3-3 protein from the amino terminus of c-Raf-1. Oncogene 12: 609–619.

    CAS  PubMed  Google Scholar 

  • Rommel C, Radziwill G, Moelling K, Hafen E . (1997). Negative regulation of Raf activity by binding of 14-3-3 to the amino terminus of Raf in vivo. Mech Dev 64: 95–104.

    Article  CAS  PubMed  Google Scholar 

  • Roy F, Laberge G, Douziech M, Ferland-McCollough D, Therrien M . (2002). KSR is a scaffold required for activation of the ERK/MAPK module. Genes Dev 16: 427–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Lane A, Yan J, McPherson R, Hancock JF . (1997). Activity of plasma membrane-recruited Raf-1 is regulated by Ras via the Raf zinc finger. J Biol Chem 272: 20139–20145.

    Article  CAS  PubMed  Google Scholar 

  • Rushworth LK, Hindley AD, O'Neill E, Kolch W . (2006). Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol 26: 2262–2272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaeffer HJ, Weber MJ . (1999). Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19: 2435–2444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieburth DS, Sun Q, Han M . (1998). SUR-8, a conserved Ras-binding protein with leucine-rich repeats, positively regulates Ras-mediated signaling in C. elegans. Cell 94: 119–130.

    Article  CAS  PubMed  Google Scholar 

  • Stewart S, Sundaram M, Zhang Y, Lee J, Han M, Guan KL . (1999). Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol Cell Biol 19: 5523–5534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto T, Stewart S, Han M, Guan KL . (1998). The kinase suppressor of Ras (KSR) modulates growth factor and Ras signaling by uncoupling Elk-1 phosphorylation from MAP kinase activation. EMBO J 17: 1717–1727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaram M, Han M . (1995). The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction. Cell 83: 889–901.

    Article  CAS  PubMed  Google Scholar 

  • Terai K, Matsuda M . (2006). The amino-terminal B-Raf-specific region mediates calcium-dependent homo- and hetero-dimerization of Raf. EMBO J 25: 3556–3564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Therrien M, Chang HC, Solomon NM, Karim FD, Wassarman DA, Rubin GM . (1995). KSR, a novel protein kinase required for RAS signal transduction. Cell 83: 879–888.

    Article  CAS  PubMed  Google Scholar 

  • Therrien M, Michaud NR, Rubin GM, Morrison DK . (1996). KSR modulates signal propagation within the MAPK cascade. Genes Dev 10: 2684–2695.

    Article  CAS  PubMed  Google Scholar 

  • Therrien M, Wong AM, Rubin GM . (1998). CNK, a RAF-binding multidomain protein required for RAS signaling. Cell 95: 343–353.

    Article  CAS  PubMed  Google Scholar 

  • Therrien M, Wong AM, Kwan E, Rubin GM . (1999). Functional analysis of CNK in RAS signaling. Proc Natl Acad Sci USA 96: 13259–13263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torii S, Nakayama K, Yamamoto T, Nishida E . (2004). Regulatory mechanisms and function of ERK MAP kinases. J Biochem (Tokyo) 136: 557–561.

    Article  CAS  Google Scholar 

  • Tsuda L, Inoue YH, Yoo MA, Mizuno M, Hata M, Lim YM et al. (1993). A protein kinase similar to MAP kinase activator acts downstream of the raf kinase in Drosophila. Cell 72: 407–414.

    Article  CAS  PubMed  Google Scholar 

  • Vaillancourt RR, Gardner AM, Johnson GL . (1994). B-Raf-dependent regulation of the MEK-1/mitogen-activated protein kinase pathway in PC12 cells and regulation by cyclic AMP. Mol Cell Biol 14: 6522–6530.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vaudry D, Stork PJ, Lazarovici P, Eiden LE . (2002). B-Raf-dependent regulation of the MEK-1/mitogen-activated protein kinase pathway in PC12 cells and regulation by cyclic AMP. Science 296: 1648–1649.

    Article  CAS  PubMed  Google Scholar 

  • Venkateswarlu K . (2003). Interaction protein for cytohesin exchange factors 1 (IPCEF1) binds cytohesin 2 and modifies its activity. J Biol Chem 278: 43460–43469.

    Article  CAS  PubMed  Google Scholar 

  • von Kriegsheim A, Pitt A, Grindlay GJ, Kolch W, Dhillon AS . (2006). Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5. Nat Cell Biol 8: 1011–1016.

    Article  CAS  PubMed  Google Scholar 

  • Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM et al. (2004). Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116: 855–867.

    Article  CAS  PubMed  Google Scholar 

  • Wassarman DA, Solomon NM, Chang HC, Karim FD, Therrien M, Rubin GM . (1996). Protein phosphatase 2A positively and negatively regulates Ras1-mediated photoreceptor development in Drosophila. Genes Dev 10: 272–278.

    Article  CAS  PubMed  Google Scholar 

  • Weber CK, Slupsky JR, Kalmes HA, Rapp UR . (2001). Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res 61: 3595–3598.

    CAS  PubMed  Google Scholar 

  • Wellbrock C, Karasarides M, Marais R . (2004). The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5: 875–885.

    Article  CAS  PubMed  Google Scholar 

  • Werry TD, Christopoulos A, Sexton PM . (2006). Mechanisms of ERK1/2 regulation by seven-transmembrane-domain receptors. Curr Pharm Des 12: 1683–1702.

    Article  CAS  PubMed  Google Scholar 

  • Widmann C, Gibson S, Jarpe MB, Johnson GL . (1999). Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79: 143–180.

    Article  CAS  PubMed  Google Scholar 

  • Williams JG, Drugan JK, Yi GS, Clark GJ, Der CJ, Campbell SL . (2000). Elucidation of binding determinants and functional consequences of Ras/Raf-cysteine-rich domain interactions. J Biol Chem 275: 22172–22179.

    Article  CAS  PubMed  Google Scholar 

  • Xing H, Kornfeld K, Muslin AJ . (1997). The protein kinase KSR interacts with 14-3-3 protein and Raf. Curr Biol 7: 294–300.

    Article  CAS  PubMed  Google Scholar 

  • Xu B, English JM, Wilsbacher JL, Stippec S, Goldsmith EJ, Cobb MH . (2000). WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem 275: 16795–16801.

    Article  CAS  PubMed  Google Scholar 

  • Yan F, Polk DB . (2001). Kinase suppressor of ras is necessary for tumor necrosis factor alpha activation of extracellular signal-regulated kinase/mitogen-activated protein kinase in intestinal epithelial cells. Cancer Res 61: 963–969.

    CAS  PubMed  Google Scholar 

  • Yao I, Hata Y, Ide N, Hirao K, Deguchi M, Nishioka H et al. (1999). MAGUIN, a novel neuronal membrane-associated guanylate kinase-interacting protein. J Biol Chem 274: 11889–11896.

    Article  CAS  PubMed  Google Scholar 

  • Yao I, Ohtsuka T, Kawabe H, Matsuura Y, Takai Y, Hata Y . (2000). Association of membrane-associated guanylate kinase-interacting protein-1 with Raf-1. Biochem Biophys Res Commun 270: 538–542.

    Article  CAS  PubMed  Google Scholar 

  • Yoder JH, Chong H, Guan KL, Han M . (2004). Modulation of KSR activity in Caenorhabditis elegans by Zn ions, qPAR-1 kinase and PP2A phosphatase. EMBO J 23: 111–119.

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Fantl WJ, Harrowe G, Williams LT . (1998). Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr Biol 8: 56–64.

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH, Guan KL . (2000). Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. EMBO J 19: 5429–5439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J . (2006). An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125: 1137–1149.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yao B, Delikat S, Bayoumy S, Lin XH, Basu S et al. (1997). Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89: 63–72.

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Horita DA, Waugh DS, Byrd RA, Morrison DK . (2002). Solution structure and functional analysis of the cysteine-rich C1 domain of kinase suppressor of Ras (KSR). J Mol Biol 315: 435–446.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann S, Moelling K . (1999). Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286: 1741–1744.

    Article  CAS  PubMed  Google Scholar 

  • Ziogas A, Moelling K, Radziwill G . (2005). CNK1 is a scaffold protein that regulates Src-mediated Raf-1 activation. J Biol Chem 280: 24205–24211.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dariel Ashton-Beaucage and Gino Laberge for helpful discussions and critical reading of the paper. AC is supported by a fellowship from La Fondation pour la Recherche Médicale (FRM; France) and MT is recipient of a Canadian Research Chair. This work was supported by grants from the Canadian Institutes of Health Research and the National Cancer Institute of Canada with funds from the Canadian Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Therrien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clapéron, A., Therrien, M. KSR and CNK: two scaffolds regulating RAS-mediated RAF activation. Oncogene 26, 3143–3158 (2007). https://doi.org/10.1038/sj.onc.1210408

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210408

Keywords

This article is cited by

Search

Quick links