Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cigarette smoke induces demethylation of prometastatic oncogene synuclein-γ in lung cancer cells by downregulation of DNMT3B

Abstract

The prometastatic oncogene synuclein-γ (SNCG) is not expressed in normal lung tissues, but it is highly expressed in lung tumors. Here, we show that cigarette smoke extract (CSE) has strong inducing effects on SNCG gene expression in A549 lung cancer cells through demethylation of SNCG CpG island. CSE treatment also augments the invasive capacity of A549 cells in an SNCG-dependent manner. To elucidate the mechanisms underlying the demethylating effects of CSE, we examined expression levels of DNA methyltransferases (DNMTs), 1, 3A and 3B in CSE-treated cells. We show that the mRNA expression of DNMT3B is specifically downregulated by CSE with a kinetics concurrent to SNCG reexpression. Utilizing siRNA to knockdown DNMT3B expression, we show that inhibition of DNMT3B directly increases SNCG mRNA expression. We further show that exogenous overexpression of DNMT3B in an SNCG-positive lung cancer cell line H292 suppresses SNCG mRNA and protein expression and induces de novo methylation of SNCG CpG island, whereas overexpression of DNMT1 or DNMT3A has no effects. Taken together, these new findings demonstrate that tobacco exposure induces the abnormal expression of SNCG in lung cancer cells through downregulation of DNMT3B. This work sheds light on the molecular understanding of demethylation of this oncogene during cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bachman KE, Rountree MR, Baylin SB . (2001). Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J Biol Chem 76: 32282–32287.

    Article  Google Scholar 

  • Belinsky SA, Klinge DM, Stidley CA, Issa JP, Herman JG, March TH et al. (2003). Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. Cancer Res 63: 7089–7093.

    CAS  PubMed  Google Scholar 

  • Belinsky SA, Nikula KJ, Baylin SB, Issa J-P . (1996). Increased cytosine DNA-methyltransferase activity is target-cell-specific and an early event in lung cancer. Proc Natl Acad Sci USA 93: 4045–4050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belinsky SA . (2004). Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Can 4: 1–11.

    Article  Google Scholar 

  • Brueckner B, Lyko F . (2004). DNA methyltransferase inhibitors: old and new drugs for an epigenetic cancer therapy. Trends Pharmacol Sci 25: 551–554.

    Article  CAS  PubMed  Google Scholar 

  • Bruening W, Giasson B, Klein-Szanto J, Lee V, Trojanowski J, Godwin A . (2000). Synucleins are expressed in the majority of breast and ovarian carcinomas and in preneoplastic lesions of the ovary. Cancer 88: 2154–2163.

    Article  CAS  PubMed  Google Scholar 

  • Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B et al. (2001). Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93: 691–699.

    Article  CAS  PubMed  Google Scholar 

  • Cao D, Maitra A, Saavedra JA, Klimstra DS, Adsay NV, Hruban RH . (2005). Expression of novel markers of pancreatic ductal adenocarcinoma in pancreatic nonductal neoplasms: additional evidence of different genetic pathways. Mod Pathol 1: 1–10.

    Google Scholar 

  • Dodge JE, Okano M, Dick F, Tsujimoto N, Chen T, Wang S et al. (2005). Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization. J Biol Chem 280: 17986–17991.

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara K, Fujimoto N, Tabata M, Nishii K, Matsuo K, Hotta K et al. (2005). Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin Cancer Res 11: 1219–1225.

    Article  CAS  PubMed  Google Scholar 

  • Gius D, Cui H, Bradbury CM, Cook J, Smart DK, Zhao S et al. (2004). Distinct effects on expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell 6: 361–371.

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Pakneshan P, Gladu J, Slack A, Szyf M . (2002). Regulation of DNA methylation in human breast cancer. J Biol Chem 277: 41571–41579.

    Article  CAS  PubMed  Google Scholar 

  • Hecht SS . (1999). Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91: 1194–1210.

    Article  CAS  PubMed  Google Scholar 

  • Hermann A, Gowher H, Jeltsch A . (2004). Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 61: 2571–2587.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Thomas A, Murray T, Thun M . (2002). Cancer statistics. CA Cancer J Clin 52: 23–47.

    Article  PubMed  Google Scholar 

  • Ji H, Liu YE, Jia T, Wang M, Liu J, Xiao G et al. (1997). Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing. Cancer Res 57: 759–764.

    CAS  PubMed  Google Scholar 

  • Lavedan C, Leroy E, Dehejia A, Buchholtz S, Dutra A, Nussbaum RL et al. (1998). Identification, localization and characterization of the human γ-synuclein gene. Human Gene 103: 106–112.

    Article  CAS  Google Scholar 

  • Li Z, Sclabas GM, Peng B, Hess KR, Abbruzzese JL, Evans DB et al. (2004). Overexpression of synuclein-γ in pancreatic adenocarcinoma. Cancer 101: 58–65.

    Article  CAS  PubMed  Google Scholar 

  • Lin RK, Hsu HS, Cheng JW, Chen CY, Chen JT, Wang YC . (2007). Alteration of DNA methyltransferases contributes to 5′CpG methylation and poor prognosis in lung cancer. Lung Cancer 55: 205–213.

    Article  PubMed  Google Scholar 

  • Liu H, Liu W, Wu Y, Zhou Y, Xue R, Luo C et al. (2005). Loss of epigenetic control of synuclein-gamma gene as a molecular indicator for metastasis in a wide range of human cancers. Cancer Res 65: 7635–7643.

    Article  CAS  PubMed  Google Scholar 

  • Loriot A, Plaen ED, Boon T, Smet CD . (2006). Transient down-regulation of DNMT1 methyltransferase leads to activation and stable hypomethylation of MAGE-A1 in melanoma cells. J Biol Chem 281: 10118–10126.

    Article  CAS  PubMed  Google Scholar 

  • Lu A, Gupta A, Li C, Ahlborn TE, Ma Y, Shi EY et al. (2001). Molecular mechanisms for aberrant expression of the human breast cancer specific gene 1 in breast cancer cells: control of transcription by DNA methylation and intronic sequences. Oncogene 20: 5173–5185.

    Article  CAS  PubMed  Google Scholar 

  • Lyko F, Ramsahoye BH, Kashevsky H, Tudor M, Mastrangelo MA, Orr-Weaver TL et al. (1999). Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila. Nat Genet 23: 363–366.

    Article  CAS  PubMed  Google Scholar 

  • Mercer BA, Kolesnikova N, Sonett J, D'Armiento J . (2004). Extracellular regulated kinase/mitogen activated protein kinase is up-regulated in pulmonary emphysema and mediates matrix metalloproteinase-1 induction by cigarette smoke. J Biol Chem 279: 17690–17696.

    Article  CAS  PubMed  Google Scholar 

  • Oka M, Rodi N, Graddy J, Chang LJ, Terada N . (2006). CpG sites preferentially methylated by Dnmt3a in vivo. J Biol Chem 281: 9901–9908.

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E . (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for the de novo methylation and mammalian development. Cell 99: 247–257.

    CAS  PubMed  Google Scholar 

  • Pakneshan P, Szyf M, Farias-Eisner R, Rabbani SA . (2004). Reversal of the hypomethylation status of Urokinase (uPA) promoter blocks breast cancer growth and metastasis. J Biol Chem 279: 31735–31744.

    Article  CAS  PubMed  Google Scholar 

  • Palmisano WA, Divine KK, Saccomanno G, Gilliland FD, Baylin SB, Herman JG et al. (2000). Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res 60: 5954–5958.

    CAS  PubMed  Google Scholar 

  • Patra SK, Patra A, Zhao H, Dahiya R . (2006). DNA methyltransferase and demethylase in human prostate cancer. Molec Carcinogenesis 33: 163–171.

    Article  Google Scholar 

  • Pfeifer GP, Drahovsky D . (1986). Preferential binding of DNA methyltransferase and increased de novo methylation of deoxyionosine containing DNA. FEBS Lett 207: 75–78.

    Article  CAS  PubMed  Google Scholar 

  • Pruitt K, Ulku AS, Frantz K, Rojas RJ, Muniz-Medina VM, Rangnekar VM et al. (2005). Ras-mediated loss of the pro-apoptotic response protein Par-4 is mediated by DNA hypermethylation through Raf-independent and Raf-dependent signaling cascades in epithelial cells. J Biol Chem 280: 23363–23370.

    Article  CAS  PubMed  Google Scholar 

  • Pulling LC, Vuillemenot BR, Hutt JA, Devereux TR, Belinsky SA . (2004). Aberrant promoter hypermethylation of the death-associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens. Cancer Res 64: 3844–3848.

    Article  CAS  PubMed  Google Scholar 

  • Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE et al. (2002). DNMT1 and DNMT3B cooperate to silence genes in human cancer cells. Nature 416: 552–556.

    Article  CAS  PubMed  Google Scholar 

  • Robert MF, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A et al. (2003). DNMT1 is required for maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 33: 61–65.

    Article  CAS  PubMed  Google Scholar 

  • Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA et al. (1999). The human DNA methyltransferases (DNMTs) 1, 3a, and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 27: 2291–2298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rountee MR, Bachman KE, Baylin SB . (2000). DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25: 269–276.

    Article  Google Scholar 

  • Russo A . (2005). Differential DNA hypermethylation of critical genes mediates the stage-specific tobacco smoke-induced neoplastic progression of lung cancer. Clin Chem Lab Med 11: 2466–2470.

    CAS  Google Scholar 

  • Schrump DS, Nguyen DM . (2005). Targeting the epigenome for the treatment and prevention of lung cancer. Semin Oncol 32: 488–502.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Sunaga N, Toyppka S, Gazdar AF, Minna JD . (2004). RNA interference-mediated knockdown of DNA methyltransferase 1 leads to promoter demethylation and gene re-expression in human lung and breast cancer cells. Cancer Res 64: 3137–3143.

    Article  CAS  PubMed  Google Scholar 

  • Thompson E . (2005). Latest advances and research in lung cancer. Drug News Prespect 18: 405–411.

    Google Scholar 

  • Wu K, Weng Z, Tao Q, Lin G, Wu X, Qian H et al. (2003). Stage-specific expression of breast cancer-specific gene γ-synuclein. Cancer Epidemiol, Biomarkers Prev 12: 920–925.

    CAS  Google Scholar 

  • Yanagawa N, Tamura G, Honda T, Endoh M, Nishizuka S, Motoyama T . (2004). Demethylation of the synuclein γ-gene CpG island in primary gastric cancers and gastric cancer cell lines. Clin Cancer Res 10: 2447–2451.

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Liu H, Liu W, Wu Y, Chen W, Jiang B et al. (2006). Abnormal activation of the synuclein-gamma gene in hepatocellular carcinomas by epigenetic alteration. Int J Oncology 28: 1081–1088.

    CAS  Google Scholar 

  • Zochbauer-Muller S, Fong KM, Virmani AK, Geradts J, Gazdar AF, Minna JD . (2001). Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res 61: 249–255.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Department of Veterans Affairs (Office of Research and Development, Medical Research Service) and by grants (BC010046 and BC033154) from the United States Army Medical Research and Material Command.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Liu.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Zhou, Y., Boggs, S. et al. Cigarette smoke induces demethylation of prometastatic oncogene synuclein-γ in lung cancer cells by downregulation of DNMT3B. Oncogene 26, 5900–5910 (2007). https://doi.org/10.1038/sj.onc.1210400

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210400

Keywords

This article is cited by

Search

Quick links