Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ZNF143 interacts with p73 and is involved in cisplatin resistance through the transcriptional regulation of DNA repair genes

Abstract

Zinc-finger protein 143 (ZNF143) is a human homolog of Xenopus transcriptional activator staf that is involved in selenocystyl tRNA transcription. We previously showed that ZNF143 expression is induced by treatment with DNA-damaging agents and that it preferentially binds to cisplatin-modified DNA. In this study, the potential function of ZNF143 was investigated. ZNF143 was overexpressed in cisplatin-resistant cells. ZNF143 knockdown in prostate cancer caused increased sensitivity for cisplatin, but not for oxaliplatin, etoposide and vincristine. We also showed that ZNF143 is associated with tumor suppressor gene product p73 but not with p53. p73 could stimulate the binding of ZNF143 to both ZNF143 binding site and cisplatin-modified DNA, and modulate the function of ZNF143. We provide a direct evidence that both Rad51 and flap endonuclease-1 are target genes of ZNF143 and overexpressed in cisplatin-resistant cells. Taken together, these experiments demonstrate that an interplay of ZNF143, p73 and ZNF143 target genes is involved in DNA repair gene expression and cisplatin resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 6
Figure 5
Figure 7

Similar content being viewed by others

References

  • Altaha R, Liang X, Yu JJ, Reed E . (2004). Excision repair cross complementing-group 1: gene expression and platinum resistance. Int J Mol Med 14: 959–970.

    CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Ear US, Koller BH, Weichselbaum RR, Bishop DK . (2000). The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem 275: 23899–23903.

    Article  CAS  Google Scholar 

  • Chaney SG, Sancar A . (1996). DNA repair: enzymatic mechanisms and relevance to drug response. J Natl Cancer Inst 88: 1346–1360.

    Article  CAS  Google Scholar 

  • Cohen SM, Lippard SJ . (2001). Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucleic Acid Res Mol Biol 67: 93–130.

    Article  CAS  Google Scholar 

  • De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A, Falco M, Annicchiarico-Petruzzelli M et al. (1998). Two new p73 splice variants, γ and δ, with different transcriptional activity. J Exp Med 188: 1763–1768.

    Article  CAS  Google Scholar 

  • Fujii R, Mutoh M, Niwa K, Yamada K, Aikou T, Nakagawa M et al. (1994). Active efflux system for cisplatin in cisplatin-resistant human KB cells. Jpn J Cancer Res 85: 426–433.

    Article  CAS  Google Scholar 

  • Imamura T, Izumi H, Nagatani G, Ise T, Minoru N, Iwamoto Y et al. (2001). Interaction with p53 enhances binding of cisplatin-modified DNA by high mobility group 1 protein. J Biol Chem 276: 7534–7540.

    Article  CAS  Google Scholar 

  • Ise T, Nagatani G, Imamura T, Kato K, Takano H, Nomoto M et al. (1999). Transcription factor Y-Box binding protein 1 binds preferentially to cisplatin-modified DNA and interacts with proliferating cell nuclear antigen. Cancer Res 59: 342–346.

    CAS  PubMed  Google Scholar 

  • Ishiguchi H, Izumi H, Torigoe T, Yoshida Y, Kubota H, Tsuji S et al. (2004). ZNF143 activates gene expression in response to DNA damage and binds to cisplatin-modified DNA. Int J Cancer 111: 900–909.

    Article  CAS  Google Scholar 

  • Izumi H, Ohta R, Nagatani G, Ise T, Nakayama Y, Nomoto M et al. (2003). p300/CBP-associated factor (P/CAF) interacts with nuclear respiratory factor-1 to regulate the UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-3 gene. Biochem J 373: 713–722.

    Article  CAS  Google Scholar 

  • Keshelava N, Zuo JJ, Chen P, Waidyaratne SN, Luna MC, Gomer CJ et al. (2001). Loss of p53 function confers high-level multidrug resistance in neuroblastoma cell lines. Cancer Res 61: 6185–6193.

    CAS  PubMed  Google Scholar 

  • Kohno K, Izumi H, Uchiumi T, Ashizuka T, Kuwano M . (2003). The pleiotropic functions of the Y-box-binding protein, YB-1. Bioessays 25: 691–698.

    Article  CAS  Google Scholar 

  • Kohno K, Uchiumi T, Niina I, Wakasugi T, Igarashi T, Momii Y et al. (2005). Transcription factors and drug resistance. Eur J Cancer 41: 2577–2586.

    Article  CAS  Google Scholar 

  • Kuwano M, Oda Y, Izumi H, Yang SJ, Uchiumi T, Iwamoto Y et al. (2004). The role of nuclear Y-box binding protein 1 as a global marker in drug resistance. Mol Cancer Ther 3: 1485–1492.

    CAS  PubMed  Google Scholar 

  • Lieber MR . (1997). The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 19: 233–240.

    Article  CAS  Google Scholar 

  • Murakami T, Shibuya I, Ise T, Chen AS, Akiyama S, Nakagawa M et al. (2001). Elevated expression of vacuolar proton pump genes and cellular pH in cisplatin resistance. Int J Cancer 93: 869–874.

    Article  CAS  Google Scholar 

  • Myslinski E, Krol A, Carbon P . (1998). ZNF76 and ZNF143 are two human homologs of the transcriptional activator staf. J Biol Chem 34: 21998–22006.

    Article  Google Scholar 

  • Ohga T, Koike K, Ono M, Makino Y, Itagaki Y, Tanimoto M et al. (1996). Role of the human Y box-binding protein YB-1 in cellular sensitivity to the DNA-damaging agents cisplatin, mitomycin C, and ultraviolet light. Cancer Res 56: 4224–4228.

    CAS  PubMed  Google Scholar 

  • Raymond E, Faivre S, Chaney S, Woynarowski J, Cvitkovic E . (2002). Cellular and molecular pharmacology of oxaliplatin. Mol Cancer Ther 1: 227–235.

    CAS  PubMed  Google Scholar 

  • Rincon JC, Engler SK, Hargrove BW, Kunkel GR . (1998). Molecular cloning of a cDNA encoding human SPH-binding factor, a conserved protein that binds to the enhancer-like region of the U6 small nuclear RNA gene promoter. Nucleic Acids Res 26: 4846–4852.

    Article  CAS  Google Scholar 

  • Schaub M, Myslinski E, Schuster C, Krol A, Carbon P . (1997). Staf, a promiscuous activator for enhanced transcription by RNA polymerase II and III. EMBO J 16: 173–181.

    Article  CAS  Google Scholar 

  • Spiro C, McMurray CT . (2003). Nuclease-deficient FEN-1 blocks Rad51/BRCA1-mediated repair and causes trinucleotide repeat instability. Mol Cell Biol 23: 6063–6074.

    Article  CAS  Google Scholar 

  • Sugaya M, Takenoyama M, Osaki T, Yasuda M, Nagashima A, Sugio K et al. (2002). Establishment of 15 cancer cell lines from patients with lung cancer and the potential tools for immunotherapy. Chest 122: 282–288.

    Article  Google Scholar 

  • Tanabe M, Izumi H, Ise T, Higuchi S, Yamori T, Yasumoto K et al. (2003). Activating transcription factor 4 increases the cisplatin resistance of human cancer cell lines. Cancer Res 63: 8592–8595.

    CAS  PubMed  Google Scholar 

  • Tew KD . (1994). Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 54: 4313–4320.

    CAS  PubMed  Google Scholar 

  • Torigoe T, Izumi H, Ishiguchi H, Yoichiro Y, Mizuho T, Takeshi Y et al. (2005). Cisplatin resistance and transcription factors. Curr Med Chem Anticancer Agents 5: 15–27.

    Article  CAS  Google Scholar 

  • Uramoto H, Izumi H, Ise T, Tada M, Uchiumi T, Kuwano M et al. (2002). p73 interacts with c-Myc to regulate Y-box-binding protein-1 expression. J Biol Chem 277: 31694–31702.

    Article  CAS  Google Scholar 

  • Uramoto H, Izumi H, Nagatani G, Ohmori H, Nahasue N, Ise T et al. (2003). Physical interaction of tumour suppressor p53/p73 with CCAAT-binding transcription factor 2 (CTF2) and differential regulation of human high-mobility group 1 (HMG1) gene expression. Biochem J 371: 301–310.

    Article  CAS  Google Scholar 

  • Vikhanskaya F, Marchini S, Marabese M, Galliera E, Broggini M . (2001). p73α overexpression is associated with resistance to treatment with DNA-damaging agents in a human ovarian cancer cell line. Cancer Res 61: 935–938.

    CAS  PubMed  Google Scholar 

  • Wood RD, Mitchell M, Lindahl T . (2005). Human DNA repair genes, 2005. Mut Res 577: 275–283.

    Article  CAS  Google Scholar 

  • Zamble DB, Lippard SJ . (1995). Cisplatin and DNA repair in cancer chemotherapy. Trends Biochem Sci 20: 435–439.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Mext), Kakenhi (13218132 and 18590307) and a Grant-in-Aid for Cancer Research from the Fukuoka Cancer Society, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Kohno.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakasugi, T., Izumi, H., Uchiumi, T. et al. ZNF143 interacts with p73 and is involved in cisplatin resistance through the transcriptional regulation of DNA repair genes. Oncogene 26, 5194–5203 (2007). https://doi.org/10.1038/sj.onc.1210326

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210326

Keywords

Search

Quick links