Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Changing the p53 master regulatory network: ELEMENTary, my dear Mr Watson

Abstract

The p53 master regulatory network provides for the stress-responsive direct control of a vast number of genes in humans that can be grouped into several biological categories including cell-cycle control, apoptosis and DNA repair. Similar to other sequence-specific master regulators, there is a matrix of key components, which provide for variation within the p53 master regulatory network that include p53 itself, target response element sequences (REs) that provide for p53 regulation of target genes, chromatin, accessory proteins and transcription machinery. Changes in any of these can impact the expression of individual genes, groups of genes and the eventual biological responses. The many REs represent the core of the master regulatory network. Since defects or altered expression of p53 are associated with over 50% of all cancers and greater than 90% of p53 mutations are in the sequence-specific DNA-binding domain, it is important to understand the relationship between wild-type or mutant p53 proteins and the target response elements. In the words of the legendary detective Sherlock Holmes, it is ‘Element ary, my dear Mr. Watson.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Ahn J, Murphy M, Kratowicz S, Wang A, Levine AJ, George DL . (1999). Down-regulation of the stathmin/Op18 and FKBP25 genes following p53 induction. Oncogene 18: 5954–5958.

    CAS  PubMed  Google Scholar 

  • Ahn J, Prives C . (2001). The C-terminus of p53: the more you learn the less you know. Nat Struct Biol 8: 730–732.

    CAS  PubMed  Google Scholar 

  • An W, Kim J, Roeder RG . (2004). Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117: 735–748.

    CAS  PubMed  Google Scholar 

  • Arva NC, Gopen TR, Talbott KE, Campbell LE, Chicas A, White DE et al. (2005). A chromatin-associated and transcriptionally inactive p53-Mdm2 complex occurs in mdm2 SNP309 homozygous cells. J Biol Chem 280: 26776–26787.

    CAS  PubMed  Google Scholar 

  • Ashur-Fabian O, Avivi A, Trakhtenbrot L, Adamsky K, Cohen M, Kajakaro G et al. (2004). Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation. Proc Natl Acad Sci USA 101: 12236–12241.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avivi A, Ashur-Fabian O, Amariglio N, Nevo E, Rechavi G . (2005). p53-a key player in tumoral and evolutionary adaptation: a lesson from the Israeli blind subterranean mole rat. Cell Cycle 4: 368–372.

    CAS  PubMed  Google Scholar 

  • Bergamaschi D, Gasco M, Hiller L, Sullivan A, Syed N, Trigiante G et al. (2003). p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 3: 387–402.

    CAS  PubMed  Google Scholar 

  • Bergamaschi D, Samuels Y, Sullivan A, Zvelebil M, Breyssens H, Bisso A et al. (2006). iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nat Genet 38: 1133–1141.

    CAS  PubMed  Google Scholar 

  • Blandino G, Levine AJ, Oren M . (1999). Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18: 477–485.

    CAS  PubMed  Google Scholar 

  • Bond GL, Hirshfield KM, Kirchhoff T, Alexe G, Bond EE, Robins H et al. (2006a). MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. Cancer Res 66: 5104–5110.

    CAS  PubMed  Google Scholar 

  • Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC et al. (2004). A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119: 591–602.

    CAS  PubMed  Google Scholar 

  • Bond GL, Menin C, Bertorelle R, Alhorpuro P, Aaltonen LA, Levine AJ . (2006b). MDM2 SNP309 Accelerates colorectal tumour formation in women. J Med Genet 43: 950–952.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brachmann RK, Vidal M, Boeke JD . (1996). Dominant-negative p53 mutations selected in yeast hit cancer hot spots. Proc Natl Acad Sci USA 93: 4091–4095.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campomenosi P, Monti P, Aprile A, Abbondandolo A, Frebourg T, Gold B et al. (2001). p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements. Oncogene 20: 3573–3579.

    CAS  PubMed  Google Scholar 

  • Cho Y, Gorina S, Jeffrey PD, Pavletich NP . (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations [see comments]. Science 265: 346–355.

    CAS  PubMed  Google Scholar 

  • Contente A, Dittmer A, Koch MC, Roth J, Dobbelstein M . (2002). A polymorphic microsatellite that mediates induction of PIG3 by p53. Nat Genet 30: 315–320.

    PubMed  Google Scholar 

  • Deppert W, Gohler T, Koga H, Kim E . (2000). Mutant p53: ‘gain of function’ through perturbation of nuclear structure and function? J Cell Biochem Suppl 35: 115–122.

    PubMed  Google Scholar 

  • Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al. (2006). Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10: 191–202.

    CAS  PubMed  Google Scholar 

  • el-Deiry WS . (1998). Regulation of p53 downstream genes. Semin Cancer Biol 8: 345–357.

    CAS  PubMed  Google Scholar 

  • el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B . (1992). Definition of a consensus binding site for p53. Nat Genet 1: 45–49.

    CAS  PubMed  Google Scholar 

  • Espinosa JM, Emerson BM . (2001). Transcriptional Regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell 8: 57–69.

    CAS  PubMed  Google Scholar 

  • Espinosa JM, Verdun RE, Emerson BM . (2003). p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol Cell 12: 1015–1027.

    CAS  PubMed  Google Scholar 

  • Flaman JM, Frebourg T, Moreau V, Charbonnier F, Martin C, Chappuis P et al. (1995). A simple p53 functional assay for screening cell lines, blood and tumors. Proc Natl Acad Sci USA 92: 3963–3967.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman J, Schmidt S, Scharer E, Iggo R . (1994). Mutation of conserved domain II alters the sequence specificity of DNA binding by the p53 protein. EMBO J 13: 5393–5400.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funk WD, Pak DT, Karas RH, Wright WE, Shay JW . (1992). A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Biol 12: 2866–2871.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes NP, Bjerke G, Llorente B, Szostek SA, Emerson BM, Espinosa JM . (2006). Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev 20: 601–612.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamroun D, Kato S, Ishioka C, Claustres M, Beroud C, Soussi T . (2006). The UMD TP53 database and website: update and revisions. Hum Mutat 27: 14–20.

    CAS  PubMed  Google Scholar 

  • Ho J, Benchimol S . (2003). Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ 10: 404–408.

    CAS  PubMed  Google Scholar 

  • Ho JS, Ma W, Mao DY, Benchimol S . (2005). p53-Dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol 25: 7423–7431.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M . (2002). Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 277: 3247–3257.

    CAS  PubMed  Google Scholar 

  • Hoh J, Jin S, Parrado T, Edington J, Levine AJ, Ott J . (2002). The p53MH algorithm and its application in detecting p53-responsive genes. Proc Natl Acad Sci USA 99: 8467–8472.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hupp TR, Lane DP . (1994). Allosteric activation of latent p53 tetramers. Curr Biol 4: 865–875.

    CAS  PubMed  Google Scholar 

  • Inga A, Monti P, Fronza G, Darden T, Resnick MA . (2001). p53 mutants exhibiting enhanced transcriptional activation and altered promoter selectivity are revealed using a sensitive, yeast-based functional assay. Oncogene 20: 501–513.

    CAS  PubMed  Google Scholar 

  • Inga A, Nahari D, Velasco-Miguel S, Friedberg EC, Resnick MA . (2002a). A novel p53 mutational hotspot in skin tumors from UV-irradiated Xpc mutant mice alters transactivation functions. Oncogene 21: 5704–5715.

    CAS  PubMed  Google Scholar 

  • Inga A, Reamon-Buettner SM, Borlak J, Resnick MA . (2005). Functional dissection of sequence-specific NKX2-5 DNA binding domain mutations associated with human heart septation defects using a yeast-based system. Hum Mol Genet 14: 1965–1975.

    CAS  PubMed  Google Scholar 

  • Inga A, Resnick MA . (2001). Novel human p53 mutations that are toxic to yeast can enhance transactivation of specific promoters and reactivate tumor p53 mutants. Oncogene 20: 3409–3419.

    CAS  PubMed  Google Scholar 

  • Inga A, Storici F, Darden TA, Resnick MA . (2002b). Differential transactivation by the p53 transcription factor is highly dependent on p53 level and promoter target sequence. Mol Cell Biol 22: 8612–8625.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishioka C, Frebourg T, Yan YX, Vidal M, Friend SH, Schmidt S et al. (1993). Screening patients for heterozygous p53 mutations using a functional assay in yeast. Nat Genet 5: 124–129.

    CAS  PubMed  Google Scholar 

  • Ito M, Yuan CX, Malik S, Gu W, Fondell JD, Yamamura S et al. (1999). Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol Cell 3: 361–370.

    CAS  PubMed  Google Scholar 

  • Johnson RA, Ince TA, Scotto KW . (2001). Transcriptional repression by p53 through direct binding to a novel DNA element. J Biol Chem 276: 27716–27720.

    CAS  PubMed  Google Scholar 

  • Johnston M . (1987). A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev 51: 458–476.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeser MD, Iggo RD . (2002). Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc Natl Acad Sci USA 99: 95–100.

    CAS  PubMed  Google Scholar 

  • Kannan K, Kaminski N, Rechavi G, Jakob-Hirsch J, Amariglio N, Givol D . (2001). DNA microarray analysis of genes involved in p53 mediated apoptosis: activation of Apaf-1. Oncogene 20: 3449–3455.

    CAS  PubMed  Google Scholar 

  • Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R et al. (2003). Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100: 8424–8429.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitayner M, Rozenberg H, Kessler N, Rabinovich D, Shaulov L, Haran TE et al. (2006). Structural basis of DNA recognition by p53 tetramers. Mol Cell 22: 741–753.

    CAS  PubMed  Google Scholar 

  • Koumenis C, Alarcon R, Hammond E, Sutphin P, Hoffman W, Murphy M et al. (2001). Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol 21: 1297–1310.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lefstin JA, Yamamoto KR . (1998). Allosteric effects of DNA on transcriptional regulators. Nature 392: 885–888.

    CAS  PubMed  Google Scholar 

  • Levine AJ, Hu W, Feng Z . (2006). The P53 pathway: what questions remain to be explored? Cell Death Differ 13: 1027–1036.

    CAS  PubMed  Google Scholar 

  • Li B, Lee MY . (2001). Transcriptional regulation of the human DNA polymerase delta catalytic subunit gene POLD1 by p53 tumor suppressor and Sp1. J Biol Chem 276: 29729–29739.

    CAS  PubMed  Google Scholar 

  • Lim YP, Lim TT, Chan YL, Song AC, Yeo BH, Vojtesek B et al. (2006). The p53 knowledgebase: an integrated information resource for p53 research. Oncogene [Epub ahead of print].

  • Liu S, Mirza A, Wang L . (2004). Generation of p53 target database via integration of microarray and global p53 DNA-binding site analysis. Methods Mol Biol 281: 33–54.

    CAS  PubMed  Google Scholar 

  • Lohr D, Venkov P, Zlatanova J . (1995). Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J 9: 777–787.

    CAS  PubMed  Google Scholar 

  • MacIsaac KD, Fraenkel E . (2006). Practical strategies for discovering regulatory DNA sequence motifs. PLoS Comput Biol 2: e36.

    PubMed  PubMed Central  Google Scholar 

  • May P, May E . (1999). Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 18: 7621–7636.

    CAS  PubMed  Google Scholar 

  • McKinney K, Mattia M, Gottifredi V, Prives C . (2004). p53 linear diffusion along DNA requires its C terminus. Mol Cell 16: 413–424.

    Article  CAS  PubMed  Google Scholar 

  • McLure KG, Lee PW . (1998). How p53 binds DNA as a tetramer. EMBO J 17: 3342–3350.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menendez D, Inga A, Resnick MA . (2006a). The biological impact of the human master regulator p53 can be altered by mutations that change the spectrum and expression of its target genes. Mol Cell Biol 26: 2297–2308.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menendez D, Krysiak O, Inga A, Krysiak B, Resnick MA, Schonfelder G . (2006b). A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network. Proc Natl Acad Sci USA 103: 1406–1411.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menendez D, Inga A, Snipe J, Krysiak O, Schönfelder G, Resnick MA . (2007). A SNP in a half-binding site creates p53 and estrogen receptor control of VEGFR1. Mol Cell Biol in press.

  • Miled C, Pontoglio M, Garbay S, Yaniv M, Weitzman JB . (2005). A genomic map of p53 binding sites identifies novel p53 targets involved in an apoptotic network. Cancer Res 65: 5096–5104.

    CAS  PubMed  Google Scholar 

  • Minsky N, Oren M . (2004). The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression. Mol Cell 16: 631–639.

    CAS  PubMed  Google Scholar 

  • Murphy M, Ahn J, Walker KK, Hoffman WH, Evans RM, Levine AJ et al. (1999). Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev 13: 2490–2501.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaich AK, Appella E, Harrington RE . (1997). DNA bending is essential for the site-specific recognition of DNA response elements by the DNA binding domain of the tumor suppressor protein p53. J Biol Chem 272: 14842–14849.

    CAS  PubMed  Google Scholar 

  • Nagaich AK, Zhurkin VB, Durell SR, Jernigan RL, Appella E, Harrington RE . (1999). p53-induced DNA bending and twisting: p53 tetramer binds on the outer side of a DNA loop and increases DNA twisting. Proc Natl Acad Sci USA 96: 1875–1880.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Farrell TJ, Ghosh P, Dobashi N, Sasaki CY, Longo DL . (2004). Comparison of the effect of mutant and wild-type p53 on global gene expression. Cancer Res 64: 8199–8207.

    CAS  PubMed  Google Scholar 

  • Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P . (2002). The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19: 607–614.

    CAS  PubMed  Google Scholar 

  • Olivier M, Langerod A, Carrieri P, Bergh J, Klaar S, Eyfjord J et al. (2006). The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12: 1157–1167.

    CAS  PubMed  Google Scholar 

  • Prives C, Hall PA . (1999). The p53 pathway. J Pathol 187: 112–126.

    CAS  PubMed  Google Scholar 

  • Qian H, Wang T, Brachmann RK . (2002). Not all p53 DNA binding sites are created equal. Proceeding of the American Association for Cancer Research 43: 1141.

    Google Scholar 

  • Reis AM, Cheo DL, Meira LB, Greenblatt MS, Bond JP, Nahari D et al. (2000). Genotype-specific Trp53 mutational analysis in ultraviolet B radiation- induced skin cancers in Xpc and Xpc Trp53 mutant mice. Cancer Res 60: 1571–1579.

    CAS  PubMed  Google Scholar 

  • Resnick-Silverman L, St Clair S, Maurer M, Zhao K, Manfredi JJ . (1998). Identification of a novel class of genomic DNA-binding sites suggests a mechanism for selectivity in target gene activation by the tumor suppressor protein p53. Genes Dev 12: 2102–2107.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Resnick MA, Inga A . (2003). Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity. Proc Natl Acad Sci USA 100: 9934–9939 . Epub 2003 Aug 8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rubbi CP, Milner J . (2003). p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J 22: 975–986.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiraishi K, Kato S, Han SY, Liu W, Otsuka K, Sakayori M et al. (2004). Isolation of temperature-sensitive p53 mutations from a comprehensive missense mutation library. J Biol Chem 279: 348–355.

    CAS  PubMed  Google Scholar 

  • Storey A, Thomas M, Kalita A, Harwood C, Gardiol D, Mantovani F et al. (1998). Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature 393: 229–234.

    CAS  PubMed  Google Scholar 

  • Storici F, Durham CL, Gordenin DA, Resnick MA . (2003). Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. Proc Natl Acad Sci USA 100: 14994–14999.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Storici F, Lewis LK, Resnick MA . (2001). In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol 19: 773–776.

    CAS  PubMed  Google Scholar 

  • Storici F, Resnick MA . (2006). The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast. Methods Enzymol 409: 329–345.

    CAS  PubMed  Google Scholar 

  • Szak ST, Mays D, Pietenpol JA . (2001). Kinetics of p53 binding to promoter sites in vivo. Mol Cell Biol 21: 3375–3386.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan T, Chu G . (2002). p53 Binds and activates the xeroderma pigmentosum DDB2 gene in humans but not mice. Mol Cell Biol 22: 3247–3254.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas M, Kalita A, Labrecque S, Pim D, Banks L, Matlashewski G . (1999). Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol 19: 1092–1100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thornborrow EC, Patel S, Mastropietro AE, Schwartzfarb EM, Manfredi JJ . (2002). A conserved intronic response element mediates direct p53-dependent transcriptional activation of both the human and murine bax genes. Oncogene 21: 990–999.

    CAS  PubMed  Google Scholar 

  • Thukral SK, Lu Y, Blain GC, Harvey TS, Jacobsen VL . (1995). Discrimination of DNA binding sites by mutant p53 proteins. Mol Cell Biol 15: 5196–5202.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tokino T, Thiagalingam S, el-Deiry WS, Waldman T, Kinzler KW, Vogelstein B . (1994). p53 tagged sites from human genomic DNA. Hum Mol Genet 3: 1537–1542.

    CAS  PubMed  Google Scholar 

  • Tomso DJ, Inga A, Menendez D, Pittman GS, Campbell MR, Storici F et al. (2005). Functionally distinct polymorphic sequences in the human genome that are targets for p53 transactivation. Proc Natl Acad Sci USA 102: 6431–6436.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    CAS  PubMed  Google Scholar 

  • Vousden KH . (2000). p53: death star. Cell 103: 691–694.

    CAS  PubMed  Google Scholar 

  • Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG . (2003). Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha. Mol Cell 12: 1137–1149.

    CAS  PubMed  Google Scholar 

  • Wang L, Wu Q, Qiu P, Mirza A, McGuirk M, Kirschmeier P et al. (2001). Analyses of p53 target genes in the human genome by bioinformatic and microarray approaches. J Biol Chem 276: 43604–43610.

    CAS  PubMed  Google Scholar 

  • Wang Y, Schwedes JF, Parks D, Mann K, Tegtmeyer P . (1995). Interaction of p53 with its consensus DNA-binding site. Mol Cell Biol 15: 2157–2165.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T et al. (2006). A global map of p53 transcription-factor binding sites in the human genome. Cell 124: 207–219.

    CAS  PubMed  Google Scholar 

  • Weinberg RL, Veprintsev DB, Bycroft M, Fersht AR . (2005). Comparative binding of p53 to its promoter and DNA recognition elements. J Mol Biol 348: 589–596.

    CAS  PubMed  Google Scholar 

  • Xu H, el-Gewely MR . (2001). P53-responsive genes and the potential for cancer diagnostics and therapeutics development. Biotechnol Annu Rev 7: 131–164.

    CAS  PubMed  Google Scholar 

  • Xu H, El-Gewely MR . (2003). Differentially expressed downstream genes in cells with normal or mutated p53. Oncol Res 13: 429–436.

    PubMed  Google Scholar 

  • Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B . (1999). Identification and classification of p53-regulated genes. Proc Natl Acad Sci USA 96: 14517–14522.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai W, Comai L . (2000). Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol Cell Biol 20: 5930–5938.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Krutchinsky A, Fukuda A, Chen W, Yamamura S, Chait BT et al. (2005). MED1/TRAP220 exists predominantly in a TRAP/ Mediator subpopulation enriched in RNA polymerase II and is required for ER-mediated transcription. Mol Cell 19: 89–100.

    CAS  PubMed  Google Scholar 

  • Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH et al. (2000). Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev 1 4: 981–993.

    Google Scholar 

Download references

Acknowledgements

We appreciate the critical comments on the paper by Chris Halweg and Tom Darden. This work was partially supported by a grant from the Italian Association for Cancer Research, AIRC (to AI) and intramural research funds from NIEHS. Jennifer Jordan is supported by a Department of Defense Breast Cancer Research Program Predoctoral Traineeship Award (BC051212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Resnick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menendez, D., Inga, A., Jordan, J. et al. Changing the p53 master regulatory network: ELEMENTary, my dear Mr Watson. Oncogene 26, 2191–2201 (2007). https://doi.org/10.1038/sj.onc.1210277

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210277

Keywords

This article is cited by

Search

Quick links