Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Dmp1 and tumor suppression

Abstract

Dmp1 (cyclin D binding myb-like protein 1; also called Dmtf1) is a transcription factor that was isolated in a yeast two-hybrid screen through its binding property to cyclin D2. Although it was initially predicted to be involved in the cyclin D-Rb pathway, overexpression of Dmp1 in primary cells induces cell cycle arrest in an Arf, p53-dependent fashion. Dmp1 is a unique Arf regulator, the promoter of which is activated by oncogenic Ras-Raf signaling. Dmp1 expression is repressed by physiological mitogenic stimuli as well as by overexpressed E2F proteins; thus, it is a novel marker of cells that have exited from the cell cycle. Spontaneous and oncogene-induced tumor formation is accelerated in both Dmp1+/− and Dmp1−/− mice; the Dmp1+/− tumors often retain and express the wild-type allele; thus, Dmp1 is haplo-insufficient for tumor suppression. Tumors from Dmp1+/− and Dmp1−/− mice often retain wild-type Arf and p53, suggesting that Dmp1 is a physiological regulator of the Arf-p53 pathway. The human DMP1 (hDMP1) gene is located on chromosome 7q21, the locus of which is often deleted in myeloid leukemia and also in some types of solid tumors. Post-translational modification of Dmp1 and its role in human malignancy remain to be investigated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Aslanian A, Iaquinta PJ, Verona R, Lees JA . (2004). Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes Dev 18: 1413–1422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernards R . (1999). CDK-independent activities of D type cyclins. Biochem Biophys Acta 1424 (2–3): M17–M22.

    CAS  PubMed  Google Scholar 

  • Bieche I, Champeme MH, Matifas F, Hacene K, Callahan R, Lidereau R . (1992). Loss of heterozygosity on chromosome 7q and aggressive primary breast cancer. Lancet 339: 139–143.

    Article  CAS  PubMed  Google Scholar 

  • Bodner SM, Naeve CW, Rakestraw KM, Jones BG, Valentine VA, Valentine MB et al. (1999). Cloning and chromosomal localization of the gene encoding human cyclin D-binding Myb-like protein (hDMP1). Gene 229: 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Brooksbank C . (2001). Tumor suppressors. One-hit wonders? Nature Rev Cancer 1: 174.

    Article  CAS  Google Scholar 

  • Calin GA, Croce CM . (2006). Genomics of chronic lymphocytic leukemia microRNAs as new players with clinical significance. Semin Oncol 33: 167–173.

    Article  CAS  PubMed  Google Scholar 

  • Cheng M, Sexl V, Sherr CJ, Roussel MF . (1998). Assembly of cyclin D-dependent kinase and titration of p27kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc Natl Acad Sci USA 95: 1091–1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102: 13944–13949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowe DL, Nguyen DC, Tsang KJ, Kyo S . (2001). E2F-1 represses transcription of the human telomerase transcriptase gene. Nucl Acid Res 29: 2789–2794.

    Article  CAS  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL . (1999). Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13: 2658–2669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmaagacli AH, Koldehoff M, Peceny R, Klein-Hitpass L, Ottinger H, Beelen DW et al. (2005). WT1 and BCR-ABL specific small interfering RNA have additive effects in the induction of apoptosis in leukemic cells. Leukemogenesis 90: 326–334.

    CAS  Google Scholar 

  • Evers R, Grummt I . (1995). Molecular coevolution of mammalian ribosomal gene terminator sequences and the transcription termination factor TTF-1. Proc Natl Acad Sci USA 92: 5827–5831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganter B, Fu S, Lipsick JS . (1998). D-type cyclins repress transcriptional activation by the v-Myb but not the c-Myb DNA-binding domain. EMBO J 17: 255–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giacinti C, Giordano A . (2006). RB and cell cycle progression. Oncogene 25: 5220–5227.

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Sherr CJ . (1996). Interaction of D-type cyclins with a novel myb-like transcription factor, DMP1. Mol Cell Biol 16: 6457–6467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horstmann S, Ferrari S, Klempnauer KH . (2000). Regulation of B-Myb activity by cyclin D1. Oncogene 19: 298–306.

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Ogawa H, Sonoda Y, Kimura T, Sakabe H, Oka Y et al. (1997). Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia. Blood 89: 1405–1412.

    CAS  PubMed  Google Scholar 

  • Inoue K, Roussel MF, Sherr CJ . (1999). Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1. Proc Natl Acad Sci USA 96: 3993–3998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue K, Sherr CJ . (1998). Gene expression and cell cycle arrest mediated by transcription factor DMP1 is antagonized by D-type cyclins through a cyclin-dependent-kinase-independent mechanism. Mol Cell Biol 18: 1590–1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue K, Sherr CJ, Shapiro LH . (1998a). Regulation of the CD13/aminopeptidase N gene by DMP1, a transcription factor antagonized by D-type cyclins. J Biol Chem 273: 29188–29194.

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H et al. (1994). WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 84: 3071–3079.

    CAS  PubMed  Google Scholar 

  • Inoue K, Tamaki H, Ogawa H, Oka Y, Soma T, Tatekawa T et al. (1998b). Wilms' tumor gene (WT1) competes with differentiation-inducing signal in hematopoietic progenitor cells. Blood 91: 2969–2976.

    CAS  PubMed  Google Scholar 

  • Inoue K, Wen R, Rehg JE, Adachi M, Cleveland JL, Roussel MF et al. (2000). Disruption of the ARF transcriptional activator DMP1 facilitates cell immortalization, Ras transformation, and tumorigenesis. Genes Dev 14: 1797–1809.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue K, Zindy F, Randle DH, Rehg JE, Sherr CJ . (2001). Dmp1 is haplo-insufficient for tumor suppression and modifies the frequencies of Arf and p53 mutations in Myc-induced lymphomas. Genes Dev 15: 2934–2939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamijo T, Bodner S, van de Kamp E, Randle DH, Sherr CJ . (1999). Tumor spectrum in ARF-deficient mice. Cancer Res 59: 2217–2222.

    CAS  PubMed  Google Scholar 

  • Kerr J, Leary JA, Hurst T, Shih YC, Antalis TM, Friedlander M et al. (1996). Allelic loss on chromosome 7q in ovarian adenocarcinomas: two critical regions and a rearrangement of the PLANH1 locus. Oncogene 13: 1815–1818.

    PubMed  Google Scholar 

  • Kim WY, Sharpless NE . (2006). The regulation of INK4/ARF in cancer and aging. Cell 127: 265–275.

    Article  CAS  PubMed  Google Scholar 

  • Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z et al. (2004). A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18: 1165–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landis MW, Pawlyk BS, Li T, Sicinski P, Hinds PW . (2006). Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell 9: 13–22.

    Article  CAS  PubMed  Google Scholar 

  • Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW . (1998). Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12: 3008–3019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Luo RZ, Peng H, Huang M, Nishimoto A, Hunt KK et al. (2006). E2F-HDAC complexes negatively regulate the tumor suppressor gene ARHI in breast cancer. Oncogene 25: 230–239.

    Article  CAS  PubMed  Google Scholar 

  • Mallakin A, Taneja P, Matise LA, Willingham MC, Inoue K . (2006). Expression of Dmp1 in specific differentiated, nonproliferating cells and its repression by E2Fs. Oncogene 25: 7703–7713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon M, Woods D . (2001). Regulation of the p53 pathway by Ras, the plot thickens. Biochem Biophys Acta 1471: M63–M71.

    CAS  PubMed  Google Scholar 

  • Oh I-H, Reddy EP . (1999). The myb gene family in cell growth, differentiation, and apoptosis. Oncogene 18: 3017–3033.

    Article  CAS  PubMed  Google Scholar 

  • Palmero I, Pantoja C, Serrano M . (1998). p19ARF links the tumour suppressor p53 to ras. Nature 395: 125–126.

    Article  CAS  PubMed  Google Scholar 

  • Palmero I, Murga M, Zubiaga A, Serrano M . (2002). Activation of ARF by oncogenic stress in mouse fibroblasts is independent of E2F1 and E2F2. Oncogene 21: 2939–2947.

    Article  CAS  PubMed  Google Scholar 

  • Quon KC, Berns A . (2001). Haplo-insufficiency? Let me count the ways. Genes Dev 15: 2917–2921.

    Article  CAS  PubMed  Google Scholar 

  • Rowland BD, Denissov SG, Douma S, Stunnenberg HG, Bernards R, Peeper DS . (2002). E2F transcriptional repressor complexes are critical downstream targets of p19(ARF)/p53-induced proliferative arrest. Cancer Cell 2: 55–65.

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ . (2000). The Pezcoller lecture: cancer cell cycle revisited. Cancer Res 60: 3689–3695.

    CAS  PubMed  Google Scholar 

  • Sherr CJ . (2001). The INK4a/ARF network in tumor suppression. Nat Rev Mol Cell Biol 2: 731–737.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ . (2006). Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6: 663–673.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Robers JM . (2004). Living with or without cyclin and cyclin-dependent kinases. Genes Dev 18: 2699–2711.

    Article  CAS  PubMed  Google Scholar 

  • Sreeramaneni R, Chaudhry A, McMahon M, Sherr CJ, Inoue K . (2005). Ras-Raf-Arf signaling critically depends on Dmp1 transcription factor. Mol Cell Biol 25: 220–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trovato M, Ulivieri A, Dominici R, Ruggeri RM, Vitarelli E, Benvenga S et al. (2004). Clinico-pathological significance of cell-type-specific loss of heterozygosity on chromosome 7q21: analysis of 318 microdissected thyroid lesions. Endocr Relat Cancer 11: 365–376.

    Article  CAS  PubMed  Google Scholar 

  • Tschan MP, Fischer KM, Fung VS, Pirnia F, Borner MM, Fey MF et al. (2003). Alternative splicing of the human cyclin D-binding Myb-like protein (hDMP1) yields a truncated protein isoform that alters macrophage differentiation patterns. J Biol Chem 278: 42750–42760.

    Article  CAS  PubMed  Google Scholar 

  • Yamagami T, Sugiyama H, Inoue K, Ogawa H, Tatekawa T, Hirata M et al. (1996). Growth inhibition of human leukemic cells by WT1 antisense oligonucleotides. Blood 87: 2878–2884.

    CAS  PubMed  Google Scholar 

  • Zwijsen R, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides R . (1997). CDK-independent activation of estrogen receptor by cyclin D1. Cell 88: 405–415.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms Karen Klein for critical reading of this review and Drs Bruce Torbett, Mario Tschan and Hiroshi Hirai for sharing unpublished data. We are very grateful to Drs Charles Sherr, Martine Roussel and John Cleveland for collaborative work and continuous encouragement on Dmp1 projects. We also thank Pankaj Taneja, Lauren Matise, Mark Willingham, Mayur Choudhary, Samantha Allen, Scott Barton, Asif Chaudhry and Ramesh Sreeramaneni for collaboration. K Inoue is supported by NIH/NCI 5R01CA106314.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Inoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoue, K., Mallakin, A. & Frazier, D. Dmp1 and tumor suppression. Oncogene 26, 4329–4335 (2007). https://doi.org/10.1038/sj.onc.1210226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210226

Keywords

This article is cited by

Search

Quick links