Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The ubiquitin–proteasome system regulates p53-mediated transcription at p21waf1 promoter

Abstract

The ubiquitin (Ub)–proteasome system (UPS) promotes the proteasomal degradation of target proteins by decorating them with Ub labels. Emerging evidence indicates a role of UPS in regulating gene transcription. In this study, we provided evidence for the involvement of UPS in the transcriptional activation function of tumor suppressor p53. We showed that both ubiquitylation and proteasomal functions are required for efficient transcription mediated by p53. Disruption of transcription by actinomycin D, 5,6-dichloro-1-β-D-ribofuranosyl-benzimadazole or α-amanitin leads to accumulation of cellular p53 protein. Proteasome inhibition by MG132 increases the occupancy of p53 protein at p53-responsive p21waf1 promoter. In addition, the Sug-1 component of 19S proteasome physically interacts with p53 in vitro and in vivo. Moreover, in response to ultraviolet-induced DNA damage, both the 19S proteasomal components, Sug1 and S1, are recruited to p21waf1 promoter region in a kinetic pattern similar to that of p53. These results suggested that UPS positively regulates p53-mediated transcription at p21waf1 promoter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adams J, Kauffman M . (2004). Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest 22: 304–311.

    Article  CAS  Google Scholar 

  • Bres V, Kiernan RE, Linares LK, Chable-Bessia C, Plechakova O, Treand C et al. (2003). A non-proteolytic role for ubiquitin in Tat-mediated transactivation of the HIV-1 promoter. Nat Cell Biol 5: 754–761.

    Article  CAS  Google Scholar 

  • Brooks CL, Gu W . (2006). p53 ubiquitination: Mdm2 and beyond. Mol Cell 21: 307–315.

    Article  CAS  Google Scholar 

  • Conaway JW, Shilatifard A, Dvir A, Conaway RC . (2000). Control of elongation by RNA polymerase II. Trends Biochem Sci 25: 375–380.

    Article  CAS  Google Scholar 

  • DeMartino GN, Slaughter CA . (1999). The proteosome, a novel protease regulated by multiple mechanisms. J Biol Chem 274: 22123–22126.

    Article  CAS  Google Scholar 

  • Dvir A, Conaway JW, Conaway RC . (2001). Mechanism of transcription initiation and promoter escape by RNA polymerase II. Curr Opin Genet Dev 11: 209–214.

    Article  CAS  Google Scholar 

  • El-Deiry WS . (1998). p21/p53, cellular growth control and genomic integrity. Curr Top Microbiol Immunol 227: 121–137.

    CAS  PubMed  Google Scholar 

  • Ferdous A, Gonzalez F, Sun L, Kodadek T, Johnston SA . (2001). The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase II. Mol Cell 7: 981–991.

    Article  CAS  Google Scholar 

  • Ferdous A, Kodadek T, Johnston SA . (2002). A nonproteolytic function of the 19S regulatory subunit of the 26S proteasome is required for efficient activated transcription by human RNA polymerase II. Biochemistry 41: 12798–12805.

    Article  CAS  Google Scholar 

  • Finley D, Ciechanover A, Varshavsky A . (1984). Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37: 43–55.

    Article  CAS  Google Scholar 

  • Gianni M, Bauer A, Garattini E, Chambon P, Rochette-Egly C . (2002). Phosphorylation by p38MAPK and recruitment of SUG-1 are required for RA-induced RAR gamma degradation and transactivation. EMBO J 21: 3760–3769.

    Article  CAS  Google Scholar 

  • Gillette TG, Gonzalez F, Delahodde A, Johnston SA, Kodadek T . (2004). Physical and functional association of RNA polymerase II and the proteasome. Proc Natl Acad Sci USA 101: 5904–5909.

    Article  CAS  Google Scholar 

  • Glickman MH, Ciechanover A . (2002). The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82: 373–428.

    Article  CAS  Google Scholar 

  • Glickman MH, Rubin DM, Fried VA, Finley D . (1998). The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol 18: 3149–3162.

    Article  CAS  Google Scholar 

  • Gonzalez F, Delahodde A, Kodadek T, Johnston SA . (2002). Recruitment of a 19S proteasome subcomplex to an activated promoter. Science 296: 548–550.

    Article  CAS  Google Scholar 

  • Grossman SR, Deato ME, Brignone C, Chan HM, Kung AL, Tagami H et al. (2003). Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300: 342–344.

    Article  CAS  Google Scholar 

  • Hartwell LH, Kastan MB . (1994). Cell cycle control and cancer. Science 266: 1821–1828.

    Article  CAS  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M . (1997). Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.

    Article  CAS  Google Scholar 

  • Imhof MO, McDonnell DP . (1996). Yeast RSP5 and its human homolog hRPF1 potentiate hormone-dependent activation of transcription by human progesterone and glucocorticoid receptors. Mol Cell Biol 16: 2594–2605.

    Article  CAS  Google Scholar 

  • Kern SE, Pietenpol JA, Thiagalingam S, Seymour A, Kinzler KW, Vogelstein B . (1992). Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256: 827–830.

    Article  CAS  Google Scholar 

  • Kim J, Hake SB, Roeder RG . (2005). The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. Mol Cell 20: 759–770.

    Article  CAS  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH . (1997). Regulation of p53 stability by Mdm2. Nature 387: 299–303.

    Article  CAS  Google Scholar 

  • Lee JW, Ryan F, Swaffield JC, Johnston SA, Moore DD . (1995). Interaction of thyroid-hormone receptor with a conserved transcriptional mediator. Nature 374: 91–94.

    Article  CAS  Google Scholar 

  • Levine AJ . (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    Article  CAS  Google Scholar 

  • Lin L, Ozaki T, Takada Y, Kageyama H, Nakamura Y, Hata A et al. (2005). topors, a p53 and topoisomerase I-binding RING finger protein, is a coactivator of p53 in growth suppression induced by DNA damage. Oncogene 24: 3385–3396.

    Article  CAS  Google Scholar 

  • Lipford JR, Deshaies RJ . (2003). Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation. Nat Cell Biol 5: 845–850.

    Article  CAS  Google Scholar 

  • Lipford JR, Smith GT, Chi Y, Deshaies RJ . (2005). A putative stimulatory role for activator turnover in gene expression. Nature 438: 113–116.

    Article  CAS  Google Scholar 

  • Ljungman M, Zhang FF, Chen F, Rainbow AJ, McKay BC . (1999). Inhibition of RNA polymerase II as a trigger for the p53 response. Oncogene 18: 583–592.

    Article  CAS  Google Scholar 

  • Malik S, Roeder RG . (2005). Dynamic regulation of pol II transcription by the mammalian mediator complex. Trends Biochem Sci 30: 256–263.

    Article  CAS  Google Scholar 

  • Molinari E, Gilman M, Natesan S . (1999). Proteasome-mediated degradation of transcriptional activators correlates with activation domain potency in vivo. EMBO J 18: 6439–6447.

    Article  CAS  Google Scholar 

  • Muratani M, Tansey WP . (2003). How the ubiquitin–proteasome system controls transcription. Nat Rev Mol Cell Biol 4: 192–201.

    Article  CAS  Google Scholar 

  • Nawaz Z, Lonard DM, Smith CL, Lev-Lehman E, Tsai SY, Tsai MJ et al. (1999). The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol 19: 1182–1189.

    Article  CAS  Google Scholar 

  • O’Hagan HM, Ljungman M . (2004). Nuclear accumulation of p53 following inhibition of transcription is not due to diminished levels of MDM2. Oncogene 23: 5505–5512.

    Article  Google Scholar 

  • Rajendra R, Malegaonkar D, Pungaliya P, Marshall H, Rasheed Z, Brownell J et al. (2004). Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquitinates p53. J Biol Chem 279: 36440–36444.

    Article  CAS  Google Scholar 

  • Reid G, Hubner MR, Metivier R, Brand H, Denger S, Manu D et al. (2003). Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 11: 695–707.

    Article  CAS  Google Scholar 

  • Roeder RG . (1996). The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci 21: 327–335.

    Article  CAS  Google Scholar 

  • Saccani S, Pantano S, Natoli G . (2001). Two waves of nuclear factor kappaB recruitment to target promoters. J Exp Med 193: 1351–1359.

    Article  CAS  Google Scholar 

  • Saleh A, Collart M, Martens JA, Genereaux J, Allard S, Cote J et al. (1998). TOM1p, a yeast hect-domain protein which mediates transcriptional regulation through the ADA/SAGA coactivator complexes. J Mol Biol 282: 933–946.

    Article  CAS  Google Scholar 

  • Salghetti SE, Caudy AA, Chenoweth JG, Tansey WP . (2001). Regulation of transcriptional activation domain function by ubiquitin. Science 293: 1651–1653.

    Article  CAS  Google Scholar 

  • Salghetti SE, Muratani M, Wijnen H, Futcher B, Tansey WP . (2000). Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis. Proc Natl Acad Sci USA 97: 3118–3123.

    Article  CAS  Google Scholar 

  • Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, Kastan MB . (1997). DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 11: 3471–3481.

    Article  CAS  Google Scholar 

  • Swaffield JC, Melcher K, Johnston SA . (1995). A highly conserved ATPase protein as a mediator between acidic activation domains and the TATA-binding protein. Nature 374: 88–91.

    Article  CAS  Google Scholar 

  • Szak ST, Mays D, Pietenpol JA . (2001). Kinetics of p53 binding to promoter sites in vivo. Mol Cell Biol 21: 3375–3386.

    Article  CAS  Google Scholar 

  • Varshavsky A . (1997). The ubiquitin system. Trends Biochem Sci 22: 383–387.

    Article  CAS  Google Scholar 

  • Venkatachalam S, Denissenko MF, Wani AA . (1995). DNA repair in human cells: quantitative assessment of bulky anti-BPDE DNA adducts by non-competitive immunoassays. Carcinogenesis 16: 2029–2036.

    Article  CAS  Google Scholar 

  • vom Baur E, Zechel C, Heery D, Heine MJ, Garnier JM, Vivat V et al. (1996). Differential ligand-dependent interact. EMBO J 15: 110–124.

    Article  CAS  Google Scholar 

  • Wang D, Moriggl R, Stravopodis D, Carpino N, Marine JC, Teglund S et al. (2000). A small amphipathic alpha-helical region is required for transcriptional activities and proteasome-dependent turnover of the tyrosine-phosphorylated Stat5. EMBO J 19: 392–399.

    Article  CAS  Google Scholar 

  • Wani MA, Zhu QZ, El-Mahdy MA, Wani AA . (1999). Influence of p53 tumor suppressor protein on bias of DNA repair and apoptotic response in human cells. Carcinogenesis 20: 765–772.

    Article  CAS  Google Scholar 

  • Wu X, Bayle JH, Olson D, Levine AJ . (1993). The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7: 1126–1132.

    Article  CAS  Google Scholar 

  • Zhu Q, Yao J, Wani G, Chen J, Wang QE, Wani AA . (2004). The ubiquitin–proteasome pathway is required for the function of the viral VP16 transcriptional activation domain. FEBS Lett 556: 19–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Bert Vogelstein for p53 expression constructs and p53-responsive reporters, Moshe Oren for GAL4-p53 constructs, Jeffrey E Kudlow for GST-Sug-1 constructs. We also thank Drs Michael Tainsky for providing Li–Fraumeni syndrome cell lines and Fumio Hanaoka for providing FM3A and ts85 cell lines. We are grateful to Dr Jianming Chen for help with some pull-down experiments and Dr Song Qin for critical reading of the manuscript. The work was supported by Public Health Service Grants ES02388 and ES12991 from NIEHS and CA93413 from NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A A Wani.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Q., Wani, G., Yao, J. et al. The ubiquitin–proteasome system regulates p53-mediated transcription at p21waf1 promoter. Oncogene 26, 4199–4208 (2007). https://doi.org/10.1038/sj.onc.1210191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210191

Keywords

This article is cited by

Search

Quick links