Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Genome complexity in acute lymphoblastic leukemia is revealed by array-based comparative genomic hybridization

Abstract

Chromosomal abnormalities are important for the classification and risk stratification of patients with acute lymphoblastic leukemia (ALL). However, approximately 30% of childhood and 50% of adult patients lack abnormalities with clinical relevance. Here, we describe the use of array-based comparative genomic hybridization (aCGH) to identify copy number alterations (CNA) in 58 ALL patients. CNA were identified in 83% of cases, and most frequently involved chromosomes 21 (n=42), 9 (n=21), 6 (n=16), 12 (n=11), 15 (n=11), 8 (n=10) and 17 (n=10). Deletions of 6q (del(6q)) were heterogeneous in size, in agreement with previous data, demonstrating the sensitivity of aCGH to measure CNA. Although 9p deletions showed considerable variability in both the extent and location, all encompassed the CDKN2A locus. Six patients showed del(12p), with a common region encompassing the ETV6 gene. Complex CNA were observed involving chromosomes 6 (n=2), 15 (n=2) and 21 (n=11) with multiple regions of loss and gain along each chromosome. Chromosome 21 CNA shared a common region of gain, with associated subtelomeric deletions. Other recurrent findings included dim(13q), dim(16q) and enh(17q). This is the first report of genome-wide detection of CNA in ALL patients using aCGH, and it has demonstrated a higher level of karyotype complexity than anticipated from conventional cytogenetic analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Attarbaschi A, Mann G, Konig M, Dworzak MN, Trebo MM, Muhlegger N et al. (2004). Incidence and relevance of secondary chromosome abnormalities in childhood TEL/AML1+ acute lymphoblastic leukemia: an interphase FISH analysis. Leukemia 18: 1611–1616.

    Article  CAS  Google Scholar 

  • Behrendt H, Charrin C, Gibbons B, Harrison CJ, Hawkins JM, Heerema NA et al. (1995). Dicentric (9;12) in acute lymphocytic leukemia and other hematological malignancies: report from a dic(9;12) study group. Leukemia 9: 102–106.

    CAS  Google Scholar 

  • Berger R, Dastugue N, Busson M, Van Den Akker J, Perot C, Ballerini P et al. (2003). t(5;14)/HOX11L2-positive T-cell acute lymphoblastic leukemia. A collaborative study of the Groupe Francais de Cytogenetique Hematologique (GFCH). Leukemia 17: 1851–1857.

    Article  CAS  Google Scholar 

  • Bertin R, Acquaviva C, Mirebeau D, Guidal-Giroux C, Vilmer E, Cave H . (2003). CDKN2A, CDKN2B and MTAP gene dosage permits precise characterization of mono- and bi-allelic 9p21 deletions in childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 37: 44–57.

    Article  CAS  Google Scholar 

  • Chung CY, Kantarjian H, Haidar M, Starostik P, Manshouri T, Gidel C et al. (2000). Deletions in the 13q14 locus in adult lymphoblastic leukemia: rate of incidence and relevance. Cancer 88: 1359–1364.

    Article  CAS  Google Scholar 

  • Clark R, Byatt SA, Bennett CF, Brama M, Martineau M, Moorman AV et al. (2000). Monosomy 20 as a pointer to dicentric (9;20) in acute lymphoblastic leukemia. Leukemia 14: 241–246.

    Article  CAS  Google Scholar 

  • Faderl S, Kantarjian HM, Talpaz M, Estrov Z . (1998). Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood 91: 3995–4019.

    CAS  Google Scholar 

  • Fioretos T, Strombeck B, Sandberg T, Johansson B, Billstrom R, Borg A et al. (1999). Isochromosome 17q in blast crisis of chronic myeloid leukemia and in other hematologic malignancies is the result of clustered breakpoints in 17p11 and is not associated with coding TP53 mutations. Blood 94: 225–232.

    CAS  Google Scholar 

  • Foroni L, Sorour AF, Sinclair PB, Duke VD . (2003). Loss of heterozygosity (LOH) and microsatellite instability (MSI) of chromosome 6q16–21 identifies a prognostically poor group of childhood and adult T-cell precursor acute lymphoblastic leukemia (ALL) patients. Blood 102: 606.

    Google Scholar 

  • Haas O, Henn T, Romanakis K, du Manoir S, Lengauer C . (1998). Comparative genomic hybridization as part of a new diagnostic strategy in childhood hyperdiploid acute lymphoblastic leukemia. Leukemia 12: 474–481.

    Article  CAS  Google Scholar 

  • Hann I, Vora A, Harrison G, Harrison C, Martineau M, Moorman AV et al. (2001). Determinants of outcome after intensified therapy of childhood lymphoblastic leukaemia: results from Medical Research Council United Kingdom acute lymphoblastic leukemia XI protocol. Br J Haematol 113: 103–114.

    Article  CAS  Google Scholar 

  • Harewood L, Robinson H, Harris R, Al-Obaidi MJ, Jalali GR, Martineau M et al. (2003). Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia 17: 547–553.

    Article  CAS  Google Scholar 

  • Harrison CJ, Moorman AV, Barber KE, Broadfield ZJ, Cheung KL, Harris RL et al. (2005). Interphase molecular cytogenetic screening for chromosomal abnormalities of prognostic significance in childhood acute lymphoblastic leukaemia: a UK Cancer Cytogenetics Group Study. Br J Haematol 129: 520–530.

    Article  Google Scholar 

  • Heerema NA, Nachman JB, Sather HN, La MK, Hutchinson R, Lange BJ et al. (2004). Deletion of 7p or monosomy 7 in pediatric acute lymphoblastic leukemia is an adverse prognostic factor: a report from the Children's Cancer Group. Leukemia 18: 939–947.

    Article  CAS  Google Scholar 

  • Heerema NA, Sather HN, Sensel MG, Lee MK, Hutchinson RJ, Nachman JB et al. (2000). Abnormalities of chromosome bands 13q12 to 13q14 in childhood acute lymphoblastic leukemia. J Clin Oncol 18: 3837–3844.

    Article  CAS  Google Scholar 

  • Horsley SW, Mackay A, Iravani M, Fenwick K, Valgeirsson H, Dexter T et al. (2006). Array CGH of fusion gene-positive leukemia-derived cell lines reveals cryptic regions of genomic gain and loss. Genes Chromosomes Cancer 45: 554–564.

    Article  CAS  Google Scholar 

  • Hosoya N, Sanada M, Nannya Y, Nakazaki K, Wang L, Hangaishi A et al. (2006). Genomewide screening of DNA copy number changes in chronic myelogenous leukemia with the use of high-resolution array-based comparative genomic hybridization. Genes Chromosomes Cancer, [Epub ahead of print].

  • Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y et al. (2004). Detection of large-scale variation in the human genome. Nat Genet 36: 949–951.

    Article  CAS  Google Scholar 

  • ISCN (ed). (2005). An International System for Human Cytogenetic Nomenclature. S Karger: Basel.

  • Jackson A, Carrara P, Duke V, Sinclair P, Papaioannou M, Harrison CJ et al. (2000). Deletion of 6q16–q21 in human lymphoid malignancies: a mapping and deletion analysis. Cancer Res 60: 2775–2779.

    CAS  Google Scholar 

  • Jong K, Marchiori E, Meijer G, Vaart AV, Ylstra B . (2004). Breakpoint identification and smoothing of array comparative genomic hybridization data. Bioinformatics 20: 3636–3637.

    Article  CAS  Google Scholar 

  • Kallioniemi A, Kallioniemi O-P, Sudar D . (1992). Comparative genomic hybridisation for molecular genetic analysis of solid tumours. Science 258(5083): 818–821.

    Article  CAS  Google Scholar 

  • Larramendy ML, Huhta T, Vettenranta K, El-Rifai W, Lundin J, Pakkala S et al. (1998). Comparative genomic hybridization in childhood acute lymphoblastic leukemia. Leukemia 12: 1638–1644.

    Article  CAS  Google Scholar 

  • Martinez-Ramirez A, Urioste M, Melchor L, Blesa D, Valle L, de Andres SA et al. (2005). Analysis of myelodysplastic syndromes with complex karyotypes by high-resolution comparative genomic hybridization and subtelomeric CGH array. Genes Chromosomes Cancer 42: 287–298.

    Article  CAS  Google Scholar 

  • Mirebeau D, Acquaviva C, Suciu S, Bertin R, Dastugue D, Robert A et al. (2006). The prognostic significance of CDKN2A, CDKN2B and MTAP inactivation in B-lineage acute lymphoblastic leukemia of childhood. Results of the EORTC studies 58881 and 58951. Haematologica 91: 881–885.

    CAS  Google Scholar 

  • Moorman AV, Richards SM, Martineau M, Cheung KL, Robinson HM, Jalali GR et al. (2003). Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood 102: 2756–2762.

    Article  CAS  Google Scholar 

  • Mrozek K, Heerema NA, Bloomfield CD . (2004). Cytogenetics in acute leukemia. Blood Rev 18: 115–136.

    Article  Google Scholar 

  • Nakashima Y, Tagawa H, Suzuki R, Karnan S, Karube K, Ohshima K et al. (2005). Genome-wide array-based comparative genomic hybridization of natural killer cell lymphoma/leukemia: different genomic alteration patterns of aggressive NK-cell leukemia and extranodal Nk/T-cell lymphoma, nasal type. Genes Chromosomes Cancer 44: 247–255.

    Article  CAS  Google Scholar 

  • Paulsson K, Heidenblad M, Strombeck B, Staaf J, Jonsson G, Borg A et al. (2006). High-resolution genome-wide array-based comparative genome hybridization reveals cryptic chromosome changes in AML and MDS cases with trisomy 8 as the sole cytogenetic aberration. Leukemia 20: 840–846.

    Article  CAS  Google Scholar 

  • Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D et al. (1998). High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20: 207–211.

    Article  CAS  Google Scholar 

  • Pui CH, Evans WE . (2006). Treatment of acute lymphoblastic leukemia. N Engl J Med 354: 166–178.

    Article  CAS  Google Scholar 

  • Pui CH, Raimondi SC, Dodge RK, Rivera GK, Fuchs LA, Abromowitch M et al. (1989). Prognostic importance of structural chromosomal abnormalities in children with hyperdiploid (greater than 50 chromosomes) acute lymphoblastic leukemia. Blood 73: 1963–1967.

    CAS  Google Scholar 

  • Raghavan M, Lillington DM, Skoulakis S, Debernardi S, Chaplin T, Foot NJ et al. (2005). Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias. Cancer Res 65: 375–378.

    CAS  Google Scholar 

  • Robinson HM, Broadfield ZJ, Cheung KL, Harewood L, Harris RL, Jalali GR et al. (2003). Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia 17: 2249–2250.

    Article  CAS  Google Scholar 

  • Romana SP, Le Coniat M, Berger R . (1994). t(12;21): a new recurrent translocation in acute lymphoblastic leukemia. Genes Chromosomes Cancer 9: 186–191.

    Article  CAS  Google Scholar 

  • Rubio-Moscardo F, Climent J, Siebert R, Piris MA, Martin-Subero JI, Nielander I et al. (2005). Mantle-cell lymphoma genotypes identified with CGH to BAC microarrays define a leukemic subgroup of disease and predict patient outcome. Blood 105: 4445–4454.

    Article  CAS  Google Scholar 

  • Rucker FG, Bullinger L, Schwaenen C, Lipka DB, Wessendorf S, Frohling S et al. (2006). Disclosure of candidate genes in acute myeloid leukemia with complex karyotypes using microarray-based molecular characterization. J Clin Oncol, [Epub ahead of print].

  • Scheurlen WG, Schwabe GC, Seranski P, Joos S, Harbott J, Metzke S et al. (1999). Mapping of the breakpoints on the short arm of chromosome 17 in neoplasms with an i(17q). Genes Chromosomes Cancer 25: 230–240.

    Article  CAS  Google Scholar 

  • Scholz I, Popp S, Granzow M, Schoell B, Holtgreve-Grez H, Takeuchi S et al. (2001). Comparative genomic hybridization in childhood acute lymphoblastic leukemia: correlation with interphase cytogenetics and loss of heterozygosity analysis. Cancer Genet Cytogenet 124: 89–97.

    Article  CAS  Google Scholar 

  • Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P et al. (2004). Large-scale copy number polymorphism in the human genome. Science 305: 525–528.

    Article  CAS  Google Scholar 

  • Sinclair PB, Sorour A, Martineau M, Harrison CJ, Mitchell WA, O'Neill E et al. (2004). A fluorescence in situ hybridization map of 6q deletions in acute lymphocytic leukemia: identification and analysis of a candidate tumor suppressor gene. Cancer Res 64: 4089–4098.

    Article  CAS  Google Scholar 

  • Snijders AM, Nowak N, Segraves R, Blackwood S, Brown N, Conroy J et al. (2001). Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet 29: 263–264.

    Article  CAS  Google Scholar 

  • Strefford JC, Van Delft F, Robinson H, Worley H, Yiannikouris O, Selzer R et al. (2006). Complex genomic alterations and gene expression in acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Proc Natl Acad Sci USA 103: 8167–8172.

    Article  CAS  Google Scholar 

  • Strehl S, Konig M, Dworzak MN, Kalwak K, Haas OA . (2003). PAX5/ETV6 fusion defines cytogenetic entity dic(9;12)(p13;p13). Leukemia 17: 1121–1123.

    Article  CAS  Google Scholar 

  • Takeuchi S, Seriu T, van Dongen JJ, Szczepanski T, Tsukasaki K, Takeuchi N et al. (2003). Allelotype analysis in relapsed childhood acute lymphoblastic leukemia. Oncogene 22: 6970–6976.

    Article  CAS  Google Scholar 

  • Tyybakinoja A, Saarinen-Pihkala U, Elonen E, Knuutila S . (2006). Amplified, lost, and fused genes in 11q23–25 amplicon in acute myeloid leukemia, an array-CGH study. Genes Chromosomes Cancer 45: 257–264.

    Article  CAS  Google Scholar 

  • van Vlierberghe P, van Grotel M, Beverloo HB, Lee C, Helgason T, Buijs-Gladdines J et al. (2006). The cryptic chromosomal deletion, del(11)(p12p13), as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood, [Epub ahead of print].

  • van Zutven LJ, van Drunen E, de Bont JM, Wattel MM, Den Boer ML, Pieters R et al. (2005). CDKN2 deletions have no prognostic value in childhood precursor-B acute lymphoblastic leukaemia. Leukemia 19: 1281–1284.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study could not have been performed without the dedication of the MRC Childhood and Adult Leukaemia Working Parties and their members, who have designed and coordinated the clinical trials through which these patients were identified and treated. We thank the UK Cancer Cytogenetics Group laboratories for the contribution of fixed cell suspensions, other members of the Leukaemia Research Cytogenetics Group for technical help and discussion, and Leukaemia Research for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Strefford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strefford, J., Worley, H., Barber, K. et al. Genome complexity in acute lymphoblastic leukemia is revealed by array-based comparative genomic hybridization. Oncogene 26, 4306–4318 (2007). https://doi.org/10.1038/sj.onc.1210190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210190

Keywords

This article is cited by

Search

Quick links