Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ablation of a peptidyl prolyl isomerase Pin1 from p53-null mice accelerated thymic hyperplasia by increasing the level of the intracellular form of Notch1

Abstract

Tumor suppressor p53 is essential for checkpoint control in response to a variety of genotoxic stresses. DNA damage leads to phosphorylation on the Ser/Thr-Pro motifs of p53, which facilitates interaction with Pin1, a pSer/pThr-Pro-specific peptidyl prolyl isomerase. Pin1 is required for the timely activation of p53, resulting in apoptosis or cell cycle arrest. To investigate the physiological relationship between Pin1 and p53, we created Pin1−/−p53−/− mice. These p53-deficient mice spontaneously developed lymphomas, mainly of thymic origin, as well as generalized lymphoma infiltration into other organs, including the liver, kidneys and lungs. Ablation of Pin1, in addition to p53, accelerated the thymic hyperplasia, but the thymocytes in these Pin1−/−p53−/− mice did not infiltrate other organs. The thymocytes in 12-week-old Pin1−/−p53−/− mice were CD4CD8 (double negative) and had significantly higher levels of the intracellular form of Notch1 (NIC) than the thymocytes of p53−/− or wild-type mice. Presenilin-1, a cleavage enzyme for NIC generation from full-length Notch1 was increased in the thymocytes of Pin1−/−p53−/− mice. Pin1 depletion also inhibited the degradation of NIC by proteasomes. These results suggest that both Pin1 and p53 control the normal proliferation and differentiation of thymocytes by regulating the NIC level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Akiyama H, Shin RW, Uchida C, Kitamoto T, Uchida T . (2005). Pin1 promotes production of Alzheimer's amyloid beta from beta-cleaved amyloid precursor protein. Biochem Biophys Res Commun 336: 521–529.

    Article  CAS  Google Scholar 

  • Amson R, Lassalle JM, Halley H, Prieur S, Lethrosne F, Roperch JP et al. (2000). Behavioral alterations associated with apoptosis and down-regulation of presenilin 1 in the brain of p53-deficient mice. Proc Natl Acad Sci USA 97: 5346–5350.

    Article  CAS  Google Scholar 

  • Appella E, Anderson CW . (2001). Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268: 2764–2772.

    Article  CAS  Google Scholar 

  • Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR . (1995). High-frequency developmental abnormalities in p53-deficient mice. Curr Biol 5: 931–936.

    Article  CAS  Google Scholar 

  • Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B . (1990). Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249: 912–915.

    Article  CAS  Google Scholar 

  • Beverly LJ, Felsher DW, Capobianco AJ . (2005). Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression. Cancer Res 65: 7159–7168.

    Article  CAS  Google Scholar 

  • Capobianco AJ, Zagouras P, Blaumueller CM, Artavanis-Tsakonas S, Bishop JM . (1997). Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol Cell Biol 17: 6265–6273.

    Article  CAS  Google Scholar 

  • Cranston A, Bocker T, Reitmair A, Palazzo J, Wilson T, Mak T et al. (1997). Female embryonic lethality in mice nullizygous for both Msh2 and p53. Nat Genet 17: 114–118.

    Article  CAS  Google Scholar 

  • Deftos ML, He YW, Ojala EW, Bevan MJ . (1998). Correlating notch signaling with thymocyte maturation. Immunity 9: 777–786.

    Article  CAS  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS et al. (1992). Mice deficient for p53 are developmentally normal, but susceptible to spontaneous tumours. Nature 356: 215–221.

    Article  CAS  Google Scholar 

  • Fattman CL, An B, Dou QP . (1997). Characterization of interior cleavage of retinoblastoma protein in apoptosis. J Cell Biochem 67: 399–408.

    Article  CAS  Google Scholar 

  • Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E et al. (1996). A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 85: 733–744.

    Article  CAS  Google Scholar 

  • Fowlkes BJ, Robey EA . (2002). A reassessment of the effect of activated Notch1 on CD4 and CD8 T cell development. J Immunol 169: 1817–1821.

    Article  CAS  Google Scholar 

  • Fujimori F, Takahashi K, Uchida C, Uchida T . (1999). Mice lacking Pin1 develop normally, but are defective in entering cell cycle from G(0) arrest. Biochem Biophy Res Commun 265: 658–663.

    Article  CAS  Google Scholar 

  • Haapajärvi T, Kivinen L, Pitknen K, Laiho M . (1995). Cell cycle dependent effects of u.v.-radiation on p53 expression and retinoblastoma protein phosphorylation. Oncogene 11: 151–159.

    PubMed  Google Scholar 

  • Hasserjian RP, Aster JC, Davi F, Weinberg DS, Sklar J . (1996). Modulated expression of notch1 during thymocyte development. Blood 88: 970–976.

    CAS  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. (1994). Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7.

    Article  CAS  Google Scholar 

  • Jehn BM, Bielke W, Pear WS, Osborne BA . (1999). Cutting edge: protective effects of notch-1 on TCR-induced apoptosis. J Immunol 162: 635–638.

    CAS  PubMed  Google Scholar 

  • Katsuda K, Kataoka M, Uno F, Murakami T, Kondo T, Roth JA et al. (2002). Activation of caspase-3 and cleavage of Rb are associated with p16-mediated apoptosis in human non-small cell lung cancer cells. Oncogene 21: 2108–2113.

    Article  CAS  Google Scholar 

  • Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M et al. (1996). Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell 85: 721–732.

    Article  CAS  Google Scholar 

  • Kopan R, Schroeter EH, Weintraub H, Nye JS . (1996). Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc Natl Acad Sci USA 93: 1683–1688.

    Article  CAS  Google Scholar 

  • Lai EC . (2002). Notch cleavage: Nicastrin helps Presenilin make the final cut. Curr Biol 12: R200–R202.

    Article  CAS  Google Scholar 

  • Laws AM, Osborne BA . (2004). p53 regulates thymic Notch1 activation. Eur J Immunol 34: 726–734.

    Article  CAS  Google Scholar 

  • Levine AJ . (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    Article  CAS  Google Scholar 

  • Lin D, Shields MT, Ullrich SJ, Appella E, Mercer WE . (1992). Growth arrest induced by wild-type p53 protein blocks cells prior to or near the restriction point in late G1 phase. Proc Natl Acad Sci USA 89: 9210–9214.

    Article  CAS  Google Scholar 

  • Liou YC, Ryo A, Huang HK, Lu PJ, Bronson R, Fujimori F et al. (2002). Loss of Pin1 function in the mouse causes phenotypes resemble cyclin D1-null phenotypes. Proc Natl Acad Sci USA 99: 1335–1340.

    Article  CAS  Google Scholar 

  • Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tisty TD . (1992). Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70: 923–935.

    Article  CAS  Google Scholar 

  • Loubat A, Rochet N, Turchi L, Rezzonico R, Far DF, Auberger P et al. (1999). Evidence for a p23 caspase-cleaved form of p27KIP1 involved in G1 growth arrest. Oncogene 18: 3324–3333.

    Article  CAS  Google Scholar 

  • Lu KP, Hanes SD, Hunter T . (1996). A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380: 544–547.

    Article  CAS  Google Scholar 

  • Lutzker SG, Levine AJ . (1996). A functionally inactive p53 protein in teratocarcinoma cells is activated by either DNA damage or cellular differentiation. Nat Med 2: 804–810.

    Article  CAS  Google Scholar 

  • Lyon MF . (1961). Gene action in the X-chromosome of the mouse (Mus musculus L. Nature 190: 372–373.

    Article  CAS  Google Scholar 

  • Maillard I, Adler SH, Pear WS . (2003). Notch and the immune system. Immunity 19: 781–791.

    Article  CAS  Google Scholar 

  • Müller-Tidow C, Ji P, Diederichs S, Potratz J, Bäumer N, Köhler G et al. (2004). The cyclin A1-CDK2 complex regulates DNA double-strand break repair. Mol Cell Biol 24: 8917–8928.

    Article  Google Scholar 

  • Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N et al. (1996). Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia and pituitary tumors. Cell 85: 707–720.

    Article  CAS  Google Scholar 

  • Oswald F, Tauber B, Dobner T, Bourteele S, Kostezka U, Adler G et al. (2001). p300 acts as a transcriptional coactivator for mammalian Notch-1. Mol Cell Biol 21: 7761–7774.

    Article  CAS  Google Scholar 

  • Pastorcic M, Das HK . (2000). Regulation of transcription of the human presenilin-1 gene by ets transcription factors and the p53 prorooncogene. J Biol Chem 275: 34938–34945.

    Article  CAS  Google Scholar 

  • Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J, Baltimore D . (1996). Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 183: 2283–2291.

    Article  CAS  Google Scholar 

  • Purdie CA, Harrison DJ, Peter A, Dobbie L, White S, Howie SE et al. (1994). Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 9: 603–609.

    CAS  PubMed  Google Scholar 

  • Radtke F, Wilson A, Mancini SJ, MacDonald HR . (2004). Notch regulation of lymphocyte development and function. Nat Immunol 5: 247–253.

    Article  CAS  Google Scholar 

  • Rastan S . (1994). X chromosome inactivation and the Xist gene. Curr Opin Genet Dev 4: 292–297.

    Article  CAS  Google Scholar 

  • Robey E, Chang D, Itano A, Cado D, Alexander H, Lans D et al. (1996). An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87: 483–492.

    Article  CAS  Google Scholar 

  • Rogel A, Popliker M, Webb CG, Oren M . (1988). p53 cellular tumor antigen: analysis of mRNA levels in normal adult tissues, embryos, and tumors. Biochim Biophys Acta 950: 395–402.

    Article  Google Scholar 

  • Ronchini C, Capobianco AJ . (2001). Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 21: 5925–5934.

    Article  CAS  Google Scholar 

  • Roperch JP, Alvaro V, Prieur S, Tuynder M, Nemani M, Lethrosne F et al. (1998). Inhibition of presenilin 1 expression is promoted by p53 and p21WAF-1 and results in apoptosis and tumor suppression. Nat Med 4: 835–838.

    Article  CAS  Google Scholar 

  • Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T . (1995). A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 10: 175–180.

    Article  CAS  Google Scholar 

  • Schroeter EH, Kisslinger JA, Kopan R . (1998). Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393: 382–386.

    Article  CAS  Google Scholar 

  • Shaw PE . (2002). Peptidyl-prolyl isomerases: a new twist to transcription. EMBO Rep 3: 521–526.

    Article  CAS  Google Scholar 

  • Slee EA, O'Connor DJ, Lu X . (2004). To die or not to die: how does p53 decide? Oncogene 23: 2809–2818.

    Article  CAS  Google Scholar 

  • Soengas MS, Alarcon RM, Yoshida H, Giaccia AJ, Hakem R, Mak TW et al. (1999). Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284: 156–159.

    Article  CAS  Google Scholar 

  • Soussi T . (2000). The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann NY Acad Sci 910: 121–139.

    Article  CAS  Google Scholar 

  • Struhl G, Adachi A . (1998). Nuclear access and action of notch in vivo. Cell 93: 649–660.

    Article  CAS  Google Scholar 

  • Takagi N . (1974). Differentiation of X chromosomes in early female mouse embryos. Exp Cell Res 86: 127–135.

    Article  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  Google Scholar 

  • Wahl GM, Carr AM . (2001). The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat Cell Biol 3: E277–E286. (2002); Erratum in: Nat Cell Biol 4: 328.

    Article  CAS  Google Scholar 

  • Weng AP, Ferrando AA, Lee W, Morris IVJP, Silverman LB, Sanchez-Irizarry C et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306: 269–271.

    Article  CAS  Google Scholar 

  • Wulf GM, Liou YC, Ryo A, Lee SW, Lu KP . (2002). Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J Biol Chem 277: 47976–47979.

    Article  CAS  Google Scholar 

  • Zacchi P, Gostissa M, Uchida T, Salvagno C, Avolio F, Volinia S et al. (2002). The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419: 853–857.

    Article  CAS  Google Scholar 

  • Zheng H, You H, Zhou XZ, Murray SA, Uchida T, Wulf G et al. (2002). The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419: 849–853.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T Tachikawa, RW Shin and K Takeuchi for supporting the analysis of the histopathology of the mice. We thank A Kondoh and M Suzuki for taking care of the mice. K Fukuchi, T Hasegawa, K Ikeda, D Sato, Y Sano, K Saito, NH Choi-Miura and S Arata for their technical help, and L Ostroff for editorial assistance. This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (TU), Grant-in-Aid for Scientific Research (TU), and a Special Research Grant-in-Aid for Development of Characteristic Education (KT) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, a Showa University Grant-in-Aid for Innovative Collaborative Research Projects (KT) and the Center for Interdisciplinary Research Tohoku University for Specially Promoted Research (TU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Uchida.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, K., Akiyama, H., Shimazaki, K. et al. Ablation of a peptidyl prolyl isomerase Pin1 from p53-null mice accelerated thymic hyperplasia by increasing the level of the intracellular form of Notch1. Oncogene 26, 3835–3845 (2007). https://doi.org/10.1038/sj.onc.1210153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210153

Keywords

This article is cited by

Search

Quick links