Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PDGF essentially links TGF-β signaling to nuclear β-catenin accumulation in hepatocellular carcinoma progression

Abstract

The cooperation of Ras – extracellular signal-regulated kinase/mitogen-activated protein kinase and transforming growth factor (TGF)-β signaling provokes an epithelial to mesenchymal transition (EMT) of differentiated p19ARF null hepatocytes, which is accompanied by a shift in malignancy and gain of metastatic properties. Upon EMT, TGF-β induces the secretion and autocrine regulation of platelet-derived growth factor (PDGF) by upregulation of PDGF-A and both PDGF receptors. Here, we demonstrate by loss-of-function analyses that PDGF provides adhesive and migratory properties in vitro as well as proliferative stimuli during tumor formation. PDGF signaling resulted in the activation of phosphatidylinositol-3 kinase, and furthermore associated with nuclear β-catenin accumulation upon EMT. Hepatocytes expressing constitutively active β-catenin or its negative regulator Axin were employed to study the impact of nuclear β-catenin. Unexpectedly, active β-catenin failed to accelerate proliferation during tumor formation, but in contrast, correlated with growth arrest. Nuclear localization of β-catenin was accompanied by strong expression of the Cdk inhibitor p16INK4A and the concomitant induction of the β-catenin target genes cyclin D1 and c-myc. In addition, active β-catenin revealed protection of malignant hepatocytes against anoikis, which provides a prerequisite for the dissemination of carcinoma. From these data, we conclude that TGF-β acts tumor progressive by induction of PDGF signaling and subsequent activation of β-catenin, which endows a subpopulation of neoplastic hepatocytes with features of cancer stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Artemenko Y, Gagnon A, Aubin D, Sorisky A . (2005). Anti-adipogenic effect of PDGF is reversed by PKC inhibition. J Cell Physiol 204: 646–653.

    Article  CAS  Google Scholar 

  • Barth AI, Stewart DB, Nelson WJ . (1999). T cell factor-activated transcription is not sufficient to induce anchorage-independent growth of epithelial cells expressing mutant beta-catenin. Proc Natl Acad Sci USA 96: 4947–4952.

    Article  CAS  Google Scholar 

  • Battegay EJ, Rupp J, Iruela-Arispe L, Sage EH, Pech M . (1994). PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J Cell Biol 125: 917–928.

    Article  CAS  Google Scholar 

  • Bissell DM . (2001). Chronic liver injury, TGF-beta, and cancer. Exp Mol Med 33: 179–190.

    Article  CAS  Google Scholar 

  • Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T . (2005). Opinion: migrating cancer stem cells – an integrated concept of malignant tumour progression. Nat Rev Cancer 5: 744–749.

    Article  CAS  Google Scholar 

  • Buendia MA . (2000). Genetics of hepatocellular carcinoma. Semin Cancer Biol 10: 185–200.

    Article  CAS  Google Scholar 

  • Capdeville R, Buchdunger E, Zimmermann J, Matter A . (2002). Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov 1: 493–502.

    Article  CAS  Google Scholar 

  • Chambers AF, Groom AC, MacDonald IC . (2002). Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2: 563–572.

    Article  CAS  Google Scholar 

  • Damalas A, Kahan S, Shtutman M, Ben-Ze'ev A, Oren M . (2001). Deregulated beta-catenin induces a p53- and ARF-dependent growth arrest and cooperates with Ras in transformation. EMBO J 20: 4912–4922.

    Article  CAS  Google Scholar 

  • de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O et al. (1998). Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA 95: 8847–8851.

    Article  CAS  Google Scholar 

  • Derynck R, Akhurst RJ, Balmain A . (2001). TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29: 117–129.

    Article  CAS  Google Scholar 

  • Desbois-Mouthon C, Cadoret A, Blivet-Van Eggelpoel MJ, Bertrand F, Cherqui G, Perret C et al. (2001). Insulin and IGF-1 stimulate the beta-catenin pathway through two signalling cascades involving GSK-3beta inhibition and Ras activation. Oncogene 20: 252–259.

    Article  CAS  Google Scholar 

  • Fischer AN, Herrera B, Mikula M, Proell V, Fuchs E, Gotzmann J et al. (2005). Integration of Ras subeffector signaling in TGF-beta mediated late stage hepatocarcinogenesis. Carcinogenesis 26: 931–942.

    Article  CAS  Google Scholar 

  • Friedl J, Stift A, Paolini P, Roth E, Steger GG, Mader R et al. (2000). Tumor antigen pulsed dendritic cells enhance the cytolytic activity of tumor infiltrating lymphocytes in human hepatocellular cancer. Cancer Biother Radiopharm 15: 477–486.

    Article  CAS  Google Scholar 

  • Friedl P, Wolf K . (2003). Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3: 362–374.

    Article  CAS  Google Scholar 

  • Frisch SM, Screaton RA . (2001). Anoikis mechanisms. Curr Opin Cell Biol 13: 555–562.

    Article  CAS  Google Scholar 

  • Galli A, Crabb D, Price D, Ceni E, Salzano R, Surrenti C et al. (2000). Peroxisome proliferator-activated receptor gamma transcriptional regulation is involved in platelet-derived growth factor-induced proliferation of human hepatic stellate cells. Hepatology 31: 101–108.

    Article  CAS  Google Scholar 

  • Gotzmann J, Fischer AN, Zojer M, Mikula M, Proell V, Huber H et al. (2006). A crucial function of PDGF in TGF-beta-mediated cancer progression of hepatocytes. Oncogene 25: 3170–3185.

    Article  CAS  Google Scholar 

  • Gotzmann J, Huber H, Thallinger C, Wolschek M, Jansen B, Schulte-Hermann R et al. (2002). Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-beta1 and Ha-Ras: steps towards invasiveness. J Cell Sci 115: 1189–1202.

    CAS  PubMed  Google Scholar 

  • Grunert S, Jechlinger M, Beug H . (2003). Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4: 657–665.

    Article  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al. (1998). Identification of c-MYC as a target of the APC pathway. Science 281: 1509–1512.

    Article  CAS  Google Scholar 

  • Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F . (2002). Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22: 1172–1183.

    Article  CAS  Google Scholar 

  • Jung A, Schrauder M, Oswald U, Knoll C, Sellberg P, Palmqvist R et al. (2001). The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear beta-catenin, cyclin D(1), and p16(INK4A) and is a region of low proliferation. Am J Pathol 159: 1613–1617.

    Article  CAS  Google Scholar 

  • Lu D, Cottam HB, Corr M, Carson DA . (2005). Repression of beta-catenin function in malignant cells by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci USA 102: 18567–18571.

    Article  CAS  Google Scholar 

  • Lu Z, Ghosh S, Wang Z, Hunter T . (2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell 4: 499–515.

    Article  CAS  Google Scholar 

  • Mao TL, Chu JS, Jeng YM, Lai PL, Hsu HC . (2001). Expression of mutant nuclear beta-catenin correlates with non-invasive hepatocellular carcinoma, absence of portal vein spread, and good prognosis. J Pathol 193: 95–101.

    Article  CAS  Google Scholar 

  • Matsuzaki K, Date M, Furukawa F, Tahashi Y, Matsushita M, Sakitani K et al. (2000). Autocrine stimulatory mechanism by transforming growth factor beta in human hepatocellular carcinoma. Cancer Res 60: 1394–1402.

    CAS  PubMed  Google Scholar 

  • Merle P, de la Monte S, Kim M, Herrmann M, Tanaka S, Von Dem Bussche A et al. (2004). Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma. Gastroenterology 127: 1110–1122.

    Article  CAS  Google Scholar 

  • Mikula M, Fuchs E, Huber H, Beug H, Schulte-Hermann R, Mikulits W . (2004). Immortalized p19ARF null hepatocytes restore liver injury and generate hepatic progenitors after transplantation. Hepatology 39: 628–634.

    Article  CAS  Google Scholar 

  • Mikula M, Proell V, Fischer AN, Mikulits W . (2006). Activated hepatic stellate cells induce tumor progression of neoplastic hepatocytes in a TGF-beta dependent fashion. J Cell Physiol 209: 560–567.

    Article  CAS  Google Scholar 

  • Nhieu JT, Renard CA, Wei Y, Cherqui D, Zafrani ES, Buendia MA . (1999). Nuclear accumulation of mutated beta-catenin in hepatocellular carcinoma is associated with increased cell proliferation. Am J Pathol 155: 703–710.

    Article  CAS  Google Scholar 

  • Nijhara R, Jana SS, Goswami SK, Rana A, Majumdar SS, Kumar V et al. (2001). Sustained activation of mitogen-activated protein kinases and activator protein 1 by the hepatitis B virus X protein in mouse hepatocytes in vivo. J Virol 75: 10348–10358.

    Article  CAS  Google Scholar 

  • Pinzani M, Milani S, Herbst H, DeFranco R, Grappone C, Gentilini A et al. (1996). Expression of platelet-derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis. Am J Pathol 148: 785–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Proell V, Mikula M, Fuchs E, Mikulits W . (2005). The plasticity of p19 ARF null hepatic stellate cells and the dynamics of activation. Biochim Biophys Acta 1744: 76–87.

    Article  CAS  Google Scholar 

  • Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423: 409–414.

    Article  CAS  Google Scholar 

  • Roberts AB, Wakefield LM . (2003). The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA 100: 8621–8623.

    Article  CAS  Google Scholar 

  • Rossmanith W, Schulte-Hermann R . (2001). Biology of transforming growth factor beta in hepatocarcinogenesis. Microsc Res Tech 52: 430–436.

    Article  CAS  Google Scholar 

  • Saldanha G, Ghura V, Potter L, Fletcher A . (2004). Nuclear beta-catenin in basal cell carcinoma correlates with increased proliferation. Br J Dermatol 151: 157–164.

    Article  CAS  Google Scholar 

  • Schneller M, Vuori K, Ruoslahti E . (1997). Alphavbeta3 integrin associates with activated insulin and PDGFbeta receptors and potentiates the biological activity of PDGF. EMBO J 16: 5600–5607.

    Article  CAS  Google Scholar 

  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R et al. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96: 5522–5527.

    Article  CAS  Google Scholar 

  • Siegel PM, Massague J . (2003). Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3: 807–821.

    Article  CAS  Google Scholar 

  • Thiery JP . (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442–454.

    Article  CAS  Google Scholar 

  • Tsuboi Y, Ichida T, Sugitani S, Genda T, Inayoshi J, Takamura M et al. (2004). Overexpression of extracellular signal-regulated protein kinase and its correlation with proliferation in human hepatocellular carcinoma. Liver Int 24: 432–436.

    Article  CAS  Google Scholar 

  • Weng Z, Xin M, Pablo L, Grueneberg D, Hagel M, Bain G et al. (2002). Protection against anoikis and down-regulation of cadherin expression by a regulatable beta-catenin protein. J Biol Chem 277: 18677–18686.

    Article  CAS  Google Scholar 

  • Wong CM, Fan ST, Ng IO . (2001). beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer 92: 136–145.

    Article  CAS  Google Scholar 

  • Xu XR, Huang J, Xu ZG, Qian BZ, Zhu ZD, Yan Q et al. (2001). Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci USA 98: 15089–15094.

    Article  CAS  Google Scholar 

  • Yu J, Deuel TF, Kim HR . (2000). Platelet-derived growth factor (PDGF) receptor-alpha activates c-Jun NH2-terminal kinase-1 and antagonizes PDGF receptor-beta -induced phenotypic transformation. J Biol Chem 275: 19076–19082.

    Article  CAS  Google Scholar 

  • Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S et al. (2001). Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci USA 98: 6686–6691.

    Article  CAS  Google Scholar 

  • Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry III WL et al. (1997). The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90: 181–192.

    Article  CAS  Google Scholar 

  • Zhou L, An N, Haydon RC, Zhou Q, Cheng H, Peng Y et al. (2003). Tyrosine kinase inhibitor STI-571/Gleevec down-regulates the beta-catenin signaling activity. Cancer Lett 193: 161–170.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Frank Costantini and Tannishtha Reya for providing the Axin construct and the constitutively active β-catenin construct for retroviral transmission, respectively. This work was supported by the Austrian Science Fund (FWF, SFB F28) and by the ‘Jubiläumsfonds der Oesterreichischen Nationalbank’, OENB 10171, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Mikulits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, A., Fuchs, E., Mikula, M. et al. PDGF essentially links TGF-β signaling to nuclear β-catenin accumulation in hepatocellular carcinoma progression. Oncogene 26, 3395–3405 (2007). https://doi.org/10.1038/sj.onc.1210121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210121

Keywords

This article is cited by

Search

Quick links