Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenic K-RAS subverts the antiapoptotic role of N-RAS and alters modulation of the N-RAS: gelsolin complex

Abstract

Activating mutations in members of the RAS family of genes are among the most common genetic events in human tumorigenesis. Once thought to be functionally interchangeable, it is increasingly recognized that the classical members of this protein family (H-RAS, N-RAS and K-RAS4B) exhibit unique and shared functions that are highly context-dependent. Herein, we demonstrate that the presence of an oncogenic KRAS allele results in elevated levels of GTP-bound N-RAS (N-RASĀ·GTP) in two human colorectal cancer cell lines, HCT 116 and DLD-1, compared to their isogenic counterparts in which the mutant KRAS allele has been disrupted by homologous recombination. N-RAS subserves an antiapoptotic role in cells expressing wild-type K-RAS; this function is compromised, however, by the presence of mutant K-RAS, and these cells display increased sensitivity to apoptotic stimuli. We additionally identify a physical interaction between N-RAS and gelsolin, a factor that has been shown to promote survival and show that the N-RAS:gelsolin complex is modulated differently in wild-type and mutant K-RAS environments following apoptotic challenge. These findings represent the first biochemical evidence of a functional relationship between endogenous RAS proteins and identify a dynamic physical interaction between endogenous N-RAS and gelsolin that correlates with survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Apolloni A, Prior IA, Lindsay M, Parton RG, Hancock JF . (2000). H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol Cell Biol 20: 2475ā€“2487.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Archer SY, Hodin A . (1999). Histone acetylation and cancer. Curr Opin Genet Dev 9: 171ā€“174.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bos JL . (1989). ras oncogenes in human cancer: a review. Cancer Res 49: 4682ā€“4689.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Cantrell DA, Davies AA, Crumpton MJ . (1985). Activators of protein kinase C down-regulate and phosphorylate the T3/T-cell antigen receptor complex of human T lymphocytes. Proc Natl Acad Sci USA 82: 8158ā€“8162.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Chiu VK, Bivona T, Hach A, Sajous JB, Silletti J, Wiener H et al. (2002). Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 4: 343ā€“350.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Choy E, Chiu VK, Silletti J, Feoktistov M, Morimoto T, Michaelson D et al. (1999). Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98: 69ā€“80.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Diaz R, Ahn D, Lopez-Barcons L, Malumbres M, Perez de Castro I, Lue J et al. (2002). The N-ras proto-oncogene can suppress the malignant phenotype in the presence or absence of its oncogene. Cancer Res 62: 4514ā€“4518.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Downward J . (2003). Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3: 11ā€“22.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Downward J, Graves JD, Warne PH, Rayter S, Cantrell DA . (1990). Stimulation of p21 ras upon T-cell activation. Nature 346: 719ā€“723.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Esteban LM, Vicario-Abejon C, Fernandez-Salguero P, Fernandez-Medarde A, Swaminathan N, Yienger K et al. (2001). Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol Cell Biol 21: 1444ā€“1452.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hamilton M, Wolfman A . (1998). Ha-ras and N-ras regulate MAPK activity by distinct mechanisms in vivo. Oncogene 16: 1417ā€“1428.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hamilton M, Liao J, Cathcart MK, Wolfman A . (2001). Constitutive association of c-N-Ras with c-Raf-1 and protein kinase C epsilon in latent signaling modules. J Biol Chem 276: 29079ā€“29090.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hancock JF . (2003). Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol 4: 373ā€“384.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hancock JF, Cadwallader K, Paterson H, Marshall CJ . (1991). A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J 10: 4033ā€“4039.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hancock JF, Magee AI, Childs JE, Marshall CJ . (1989). All ras proteins are isoprenylated but only some are palmitoylated. Cell 57: 1167ā€“1177.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hancock JF, Paterson H, Marshall CJ . (1990). A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21 ras to the plasma membrane. Cell 63: 133ā€“139.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E et al. (1997). K-ras is an essential gene in the mouse with partial functional overlap with N-Ras. Genes Dev 11: 2468ā€“2481.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Klampfer L, Huang J, Sasazuki T, Shirasawa S, Augenlicht L . (2004). Oncogenic Ras promotes butyrate-induced apoptosis through inhibition of gelsolin expression. J Biol Chem 279: 36680ā€“36688.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Klampfer L, Swaby LA, Huang J, Sasazuki T, Shirasawa S, Augenlicht L . (2005). Oncogenic Ras increases sensitivity of colon cancer cells to 5-FU-induced apoptosis. Oncogene 24: 3932ā€“3941.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Koera K, Nakamura K, Nakao K, Miyoshi J, Toyoshima K, Hatta T et al. (1997). K-ras is essential for the development of the mouse embryo. Oncogene 15: 1151ā€“1159.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K et al. (1997). Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278: 294ā€“298.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Koya RC, Fujita H, Shimizu S, Ohtsu M, Takimoto M, Tsujimoto Y et al. (2000). Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. J Biol Chem 275: 15343ā€“15349.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kusano H, Shimizu S, Koya RC, Fujita H, Kamada S, Kuzumaki N et al. (2000). Human gelsolin prevents apoptosis by inhibiting apoptotic mitochondrial changes via closing VDAC. Oncogene 19: 4807ā€“4814.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Matallanas D, Sanz-Moreno V, Arozarena I, Calvo F, Agudo-Ibanez L, Santos E et al. (2006). Distinct utilization of effectors and biological outcomes resulting from site-specific Ras activation: Ras functions in lipid rafts and Golgi complex are dispensable for proliferation and transformation. Mol Cell Biol 26: 100ā€“116.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ohtsu M, Sakai N, Fujita H, Kashiwagi M, Gasa S, Shimizu S et al. (1997). Inhibition of apoptosis by the actin-regulatory protein gelsolin. EMBO J 16: 4650ā€“4656.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Prior IA, Hancock JF . (2001). Compartmentalization of Ras proteins. J Cell Sci 114: 1603ā€“1608.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Prior IA, Muncke C, Parton RG, Hancock JF . (2003). Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160: 165ā€“170.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M et al. (2005). An acylation regulates localization and activity of palmitoylated Ras isoforms. Science 307: 1746ā€“1752.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E et al. (1999). Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domain. Nat Cell Biol 1: 98ā€“105.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Roy S, Plowman S, Rotblat B, Prior IA, Muncke C, Grainger S et al. (2005). Individual palmitoyl residues serve distinct roles in h-ras trafficking, microlocalization, and signaling. Mol Cell Biol 25: 6722ā€“6733.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Shirasawa S, Furuse M, Yokoyama N, Sasazuki T . (1993). Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science 260: 85ā€“88.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Umanoff H, Edelmann W, Pellicer A, Kucherlapati R . (1995). The murine N-ras gene is not essential for growth and development. Proc Natl Acad Sci USA 92: 1709ā€“1713.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M et al. (1988). Genetic alterations during colorectal-tumor development. N Engl J Med 319: 525ā€“532.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • White MA, Nicolette C, Minden A, Polverino A, Van Aelst L, Karin M et al. (1995). Multiple Ras functions can contribute to mammalian cell transformation. Cell 80: 533ā€“541.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Whitehead RH, Brown A, Bhathal PS . (1987). A method for the isolation and culture of human colonic crypts in collagen gels. In vitro Cell Dev Biol 23: 436ā€“442.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Willumsen BM, Christensen A, Hubbert NL, Papageorge AG, Lowy DR . (1984). The p21 ras C-terminus is required for transformation and membrane association. Nature 310: 583ā€“586.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wolfman JC, Wolfman A . (2000). Endogenous c-N-Ras provides a steady-state anti-apoptotic signal. J Biol Chem 275: 19315ā€“19323.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wolfman JC, Palmby T, Der CJ, Wolfman A . (2002). Cellular N-Ras promotes survival by downregulation of Jun N-terminal protein kinase and p38. Mol Cell Biol 22: 1589ā€“1606.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yin HL, Stossel TP . (1979). Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatorty protein. Nature 281: 583ā€“586.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

RJC acknowledges the support of NCI P50 95103 Special Program of Research Excellence (SPORE), U01 084239 Mouse Models of Human Cancers Consortium (MMHCC) and R01 CA46413.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J Coffey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, J., Haigis, K., Franklin, J. et al. Oncogenic K-RAS subverts the antiapoptotic role of N-RAS and alters modulation of the N-RAS: gelsolin complex. Oncogene 26, 3051ā€“3059 (2007). https://doi.org/10.1038/sj.onc.1210103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210103

Keywords

This article is cited by

Search

Quick links