Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Direct evidence for the role of centrosomally localized p53 in the regulation of centrosome duplication

Abstract

Abnormal amplification of centrosomes is the major cause of mitotic defects and chromosome instability in cancer cells. Centrosomes duplicate once in each cell cycle, and abrogation of the regulatory mechanism underlying centrosome duplication leads to centrosome amplification. p53 tumor suppressor protein is involved in the regulation of centrosome duplication: loss of p53 as well as expression of certain p53 mutants result in deregulated centrosome duplication and centrosome amplification. p53 at least in part depends on its transactivation function to control centrosome duplication, primarily via upregulation of p21 cyclin-dependent kinase (CDK) inhibitor, which prevents untimely activation of CDK2/cyclin E, a key initiator of centrosome duplication. However, numerous studies have shown the presence of p53 at centrosomes, yet the role of the centrosomally localized p53 in the regulation of centrosome duplication had been enigmatic. Here, we comparatively examined wild-type p53 and p53 mutants that are transactivation(+)/centrosome-binding(−), transactivation(−)/centrosome-binding(+) and transactivation(−)/centrosome-binding(−) for their abilities to control centrosome duplication. We found that the transactivation(+)/centrosome-binding(−) and transactivation(−)/centrosome-binding(+) mutants suppress centrosome duplication only partially compared with wild-type p53. Moreover, the transactivation(−)/centrosome-binding(−) mutant almost completely lost the ability to suppress centrosome duplication. These observations provide direct evidence for the centrosomally localized p53 to participate in the regulation of centrosome duplication in a manner independent of its transactivation function in addition to its transactivation-dependent regulation of centrosome duplication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Balczon R, Bao L, Zimmer WE, Brown K, Zinkowski RP, Brinkley BR . (1995). Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J Cell Biol 130: 105–115.

    Article  CAS  Google Scholar 

  • Bennett RA, Izumi H, Fukasawa K . (2004). Induction of centrosome amplification and chromosome instability in p53-null cells by transient exposure to subtoxic levels of S-phase-targeting anticancer drugs. Oncogene 23: 6823–6829.

    Article  CAS  Google Scholar 

  • Blair Zajdel ME, Blair GE . (1988). The intracellular distribution of the transformation-associated protein p53 in adenovirus-transformed rodent cells. Oncogene 2: 579–584.

    CAS  PubMed  Google Scholar 

  • Brown CR, Doxsey SJ, White E, Welch WJ . (1994). Both viral (adenovirus E1B) and cellular (hsp70, p53) components interact with centrosomes. J Cell Physiol 160: 47–60.

    Article  CAS  Google Scholar 

  • Campomenosi P, Monti P, Aprile A, Abbondandolo A, Frebourg T, Gold B et al. (2001). p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements. Oncogene 20: 3573–3579.

    Article  CAS  Google Scholar 

  • Ciciarello M, Mangiacasale R, Casenghi M, Zaira Limongi M, D'Angelo M, Soddu S et al. (2001). p53 displacement from centrosomes and p53-mediated G1 arrest following transient inhibition of the mitotic spindle. J Biol Chem 276: 19205–19213.

    Article  CAS  Google Scholar 

  • D'Assoro AB, Lingle WL, Salisbury JL . (2002). Centrosome amplification and the development of cancer. Oncogene 40: 6146–6153.

    Article  Google Scholar 

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). WAF-1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  Google Scholar 

  • Fukasawa K . (2005). Centrosome amplification, chromosome instability, and cancer development. Cancer Lett 230: 6–19.

    Article  CAS  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ . (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816.

    Article  CAS  Google Scholar 

  • Heichman KA, Roberts JM . (1994). Rules to replicate by. Cell 79: 557–562.

    Article  CAS  Google Scholar 

  • Hinchcliffe EH, Sluder G . (2002). Two for two: Cdk2 and its role in centrosome doubling. Oncogene 21: 6154–6160.

    Article  CAS  Google Scholar 

  • Joshi HC . (1994). Microtubule organizing centers and γ-tubulin. Curr Opin Cell Biol 6: 54–62.

    Article  CAS  Google Scholar 

  • Kaul SC, Reddel RR, Mitsui Y, Wadhwa R . (2001). An N-terminal region of Mot-2 binds to p53 in vitro. Neoplasia 3: 110–114.

    Article  CAS  Google Scholar 

  • Kawamura K, Izumi H, Ma Z, Ikeda R, Moriyama M, Tanaka T et al. (2004). Induction of centrosome amplification and chromosome instability in human bladder cancer cells by p53 mutation and cyclin E overexpression. Cancer Res 64: 4800–4809.

    Article  CAS  Google Scholar 

  • Ma Z, Izumi H, Kanai M, Kabuyama Y, Ahn NG, Fukasawa K . (2006). Mortalin controls centrosome duplication via modulating centrosomal localization of p53. Oncogene 25: 5377–5390.

    Article  CAS  Google Scholar 

  • Matsumoto Y, Hayashi K, Nishida E . (1999). Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr Biol 9: 429–432.

    Article  CAS  Google Scholar 

  • Mazia D . (1987). The chromosome cycle and the centrosome cycle in the mitotic cycle. Int Rev Cytology 100: 49–92.

    Article  CAS  Google Scholar 

  • Minella AC, Swanger J, Bryant E, Welcker M, Hwang H, Clurman BE . (2002). p53 and p21 form an inducible barrier that protects cells against cyclin E–cdk2 deregulation. Curr Biol 12: 1817–1827.

    Article  CAS  Google Scholar 

  • Morris VB, Brammall J, Noble J, Reddel R . (2000). p53 localizes to the centrosomes and spindles of mitotic cells in the embryonic chick epiblast, human cell lines, and human primary culture: an immunofluorescence study. Exp Cell Res 256: 122–130.

    Article  CAS  Google Scholar 

  • Mussman JG, Horn HF, Carroll PE, Okuda M, Tarapore P, Donehower LA et al. (2000). Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene 19: 1635–1646.

    Article  CAS  Google Scholar 

  • Oakley BR . (2000). Tubulin. Curr Top Dev Biol 49: 27–54.

    Article  CAS  Google Scholar 

  • Oikawa T, Okuda M, Ma Z, Goorha R, Tsujimoto H, Inokuma H et al. (2005). Transcriptional control of BubR1 by p53 and suppression of centrosome amplification by BubR1. Mol Cell Biol 25: 4046–4061.

    Article  CAS  Google Scholar 

  • Sherr CJ . (1994). G1 phase progression: cycling on cue. Cell 79: 551–555.

    Article  CAS  Google Scholar 

  • Shinmura K, Tarapore P, Tokuyama Y, George KR, Fukasawa K . (2005). Characterization of centrosomal association of nucleophosmin/B24 linked to Crm1 activity. FEBS Lett 579: 6621–6634.

    Article  CAS  Google Scholar 

  • Smith PD, Crossland S, Parker G, Osin P, Brooks L, Waller J et al. (1999). Novel p53 mutants selected in BRCA-associated tumors which dissociate transformation suppression from other wild-type p53 functions. Oncogene 18: 2451–2459.

    Article  CAS  Google Scholar 

  • Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM . (1999). A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18: 1660–1672.

    Article  CAS  Google Scholar 

  • Tang HY, Zhao K, Pizzolato JF, Fonarev M, Langer JC, Manfredi JJ . (1998). Constitutive expression of the cyclin-dependent kinase inhibitor p21 is transcriptionally regulated by the tumor suppressor protein p53. J Biol Chem 273: 29156–29163.

    Article  CAS  Google Scholar 

  • Tarapore P, Fukasawa K . (2002). Loss of p53 and centrosome hyperamplification. Oncogene 21: 6234–6240.

    Article  CAS  Google Scholar 

  • Tarapore P, Horn HF, Tokuyama Y, Fukasawa K . (2001a). Direct regulation of the centrosome duplication cycle by the p53-p21Waf1/Cip1 pathway. Oncogene 20: 3173–3184.

    Article  CAS  Google Scholar 

  • Tarapore P, Tokuyama Y, Horn HF, Fukasawa K . (2001b). Difference in the centrosome duplication regulatory activity among p53 ‘hot spot’ mutants: potential role of Ser 315 phosphorylation-dependent centrosome binding of p53. Oncogene 20: 6851–6863.

    Article  CAS  Google Scholar 

  • Wadhwa R, Takano S, Robert M, Yoshida A, Nomura H, Reddel RR et al. (1998). Inactivation of tumor suppressor p53 by Mot-2, a hsp70 family member. J Biol Chem 273: 29586–29591.

    Article  CAS  Google Scholar 

  • Woods DB, Vousden KH . (2001). Regulation of p53 function. Exp Cell Res 264: 56–66.

    Article  CAS  Google Scholar 

  • Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D . (1993). p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704.

    Article  CAS  Google Scholar 

  • Zhang Y, Xiong Y . (2001). A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 292: 1910–1915.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health (CA90522 and CA95925 to KF) and Training Grant (to RB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Fukasawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinmura, K., Bennett, R., Tarapore, P. et al. Direct evidence for the role of centrosomally localized p53 in the regulation of centrosome duplication. Oncogene 26, 2939–2944 (2007). https://doi.org/10.1038/sj.onc.1210085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210085

Keywords

This article is cited by

Search

Quick links