Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of NEMO, the regulatory subunit of the IKK complex, induces apoptosis in high-risk myelodysplastic syndrome and acute myeloid leukemia

Abstract

In high-risk myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), blasts constitutively activate the antiapoptotic transcription factor nuclear factor-κB (NF-κB). Here, we show that this NF-κB activation relies on the constitutive activation of the IκB kinase (IKK) complex, which is formed by the IKKα, IKKβ and IKKγ/NF-κB essential modulator (NEMO) subunits. A cell-permeable peptide that mimics the leucine zipper subdomain of IKKγ, thus preventing its oligomerization, inhibited the constitutive NF-κB activation and induced apoptotic cell death in a panel of human MDS and AML cell lines (P39, MOLM13, THP1 and MV4–11). Small interfering RNA-mediated knockdown of the p65 NF-κB subunit or the three IKK subunits including IKKγ/NEMO also induced apoptotic cell death in P39 cells. Cell death induced by the IKKγ/NEMO-antagonistic peptide involved the caspase-independent loss of the mitochondrial transmembrane potential as well as signs of outer mitochondrial membrane permeabilization with the consequent release of cytochrome c, apoptosis-inducing factor and endonuclease G. Primary bone marrow CD34+ cells from high-risk MDS and AML patients also succumbed to the IKKγ/NEMO-antagonistic peptide, but not to a mutated control peptide. Altogether, these data indicate that malignant cells in high-risk MDS and AML cells critically depend on IKKγ/NEMO to survive. Moreover, our data delineate a novel procedure for their therapeutic removal, through inhibition of IKKγ/NEMO oligomerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AIF:

apoptosis-inducing factor

AML:

acute myeloid leukemia

BMMNC:

bone marrow mononuclear cells

Casp-3a:

activated caspase-3

Cyt c:

cytochrome c

ΔΨm:

mitochondrial transmembrane potential

DAPI:

4′,6-diaminidino-2-phenylindole

DiOC6(3):

3,3′ dihexyloxacarbocyanine iodide

EndoG:

endonuclease G

FACS:

fluorescence-activated cell sorter

FISH:

fluorescent in situ hybridization

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

Hsp60:

heat-shock protein 60

IκB:

inhibitor of NF-κB

IKK:

IκB kinase

MDS:

myelodysplastic syndrome

MMP:

mitochondrial membrane permeabilization

NEMO:

NF-κB essential modulator

NF-κB:

nuclear factor κB

PI:

propidium iodide

z-VAD.fmk:

N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone

References

  • Agou F, Courtois G, Chiaravalli J, Baleux F, Coic YM, Traincard F et al. (2004a). Inhibition of NF-κB activation by peptides targeting NF-κB essential modulator (NEMO) oligomerization. J Biol Chem 279: 54248–54257.

    Article  CAS  Google Scholar 

  • Agou F, Traincard F, Vinolo E, Courtois G, Yamaoka S, Israel A et al. (2004b). The trimerization domain of NEMO is composed of the interacting C-terminal CC2 and LZ coiled-coil subdomains. J Biol Chem 279: 27861–27869.

    Article  CAS  Google Scholar 

  • Arkin MR, Wells JA . (2004). Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nat Rev Drug Discov 3: 301–317.

    Article  CAS  Google Scholar 

  • Baumgartner B, Weber M, Quirling M, Fischer C, Page S, Adam M et al. (2002). Increased IκB kinase activity is associated with activated NF-κB in acute myeloid blasts. Leukemia 16: 2062–2071.

    Article  CAS  Google Scholar 

  • Braun T, Carvalho G, Coquelle A, Vozenin MC, Lepelley P, Hirsch F et al. (2006a). NF-κB constitutes a potential therapeutic target in high-risk myelodysplastic syndrome. Blood 107: 1156–1165.

    Article  CAS  Google Scholar 

  • Braun T, Carvalho G, Fabre C, Grosjean J, Fenaux P, Kroemer G . (2006b). Targeting NF-κB in hematologic malignancies. Cell Death Differ 13: 748–758.

    Article  CAS  Google Scholar 

  • Castedo M, Ferri K, Roumier T, Metivier D, Zamzami N, Kroemer G . (2002). Quantitation of mitochondrial alterations associated with apoptosis. J Immunol Methods 265: 39–47.

    Article  CAS  Google Scholar 

  • Castedo M, Hirsch T, Susin SA, Zamzami N, Marchetti P, Macho A et al. (1996). Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J Immunol 157: 512–521.

    CAS  PubMed  Google Scholar 

  • Dev KK . (2004). Making protein interactions druggable: targeting PDZ domains. Nat Rev Drug Discov 3: 1047–1056.

    Article  CAS  Google Scholar 

  • Dombret H, Fenaux P, Soignet SL, Tallman MS . (2002). Established practice in the treatment of patients with acute promyleocytic leukemia and the introduction of arsenic trioxide as a novel therapy. Semin Hematol 39: 8–13.

    Article  CAS  Google Scholar 

  • Estrov Z, Shishodia S, Faderl S, Harris D, Van Q, Kantarjian HM et al. (2003). Resveratrol blocks interleukin-1beta-induced activation of the nuclear transcription factor NF-κB, inhibits proliferation, causes S-phase arrest, and induces apoptosis of acute myeloid leukemia cells. Blood 102: 987–995.

    Article  CAS  Google Scholar 

  • Fenaux P . (2005). Response assessments in low-risk and high-risk myelodysplastic syndromes (MDS). Semin Oncol 32: S11–S15.

    Article  Google Scholar 

  • Ghosh S, Karin M . (2002). Missing pieces in the NF-κB puzzle. Cell 109 (Suppl): S81–S96.

    Article  CAS  Google Scholar 

  • Gloire G, Dejardin E, Piette J . (2006). Extending the nuclear roles of IkappaB kinase subunits. Biochem Pharmacol (E-pub ahead of print 15 July 2006).

  • Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G et al. (1997). International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89: 2079–2088.

    CAS  PubMed  Google Scholar 

  • Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA et al. (2001). NF-κB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98: 2301–2317.

    Article  CAS  Google Scholar 

  • Guzman ML, Swiderski CF, Howard DS, Grimes BA, Rossi RM, Szilvassy SJ et al. (2002). Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 99: 16220–16225.

    Article  CAS  Google Scholar 

  • Hassan Z, Fadeel B, Zhivotovsky B, Hellstrom-Lindberg E . (1999). Two pathways of apoptosis induced with all-trans retinoic acid and etoposide in the myeloid cell line P39. Exp Hematol 27: 1322–1329.

    Article  CAS  Google Scholar 

  • Karin M, Yamamoto Y, Wang QM . (2004). The IKK NF-κB system: a treasure trove for drug development. Nat Rev Drug Discov 3: 17–26.

    Article  CAS  Google Scholar 

  • Lindberg EH . (2005). Strategies for biology- and molecular-based treatment of myelodysplastic syndromes. Curr Drug Targets 6: 713–725.

    Article  CAS  Google Scholar 

  • Luo JL, Kamata H, Karin M . (2005). IKK/NF-κB signaling: balancing life and death – a new approach to cancer therapy. J Clin Invest 115: 2625–2632.

    Article  CAS  Google Scholar 

  • Matsuo Y, MacLeod RA, Uphoff CC, Drexler HG, Nishizaki C, Katayama Y et al. (1997). Two acute monocytic leukemia (AML-M5a) cell lines (MOLM-13 and MOLM 14) with interclonal phenotypic heterogeneity showing MLL-AF9 fusion resulting from an occult chromosome insertion, ins(11;9)(q23;p22p23). Leukemia 11: 1469–1477.

    Article  CAS  Google Scholar 

  • Metivier D, Dallaporta B, Zamzami N, Larochette N, Susin SA, Marzo I et al. (1998). Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunol Lett 61: 157–164.

    Article  CAS  Google Scholar 

  • Nagai M, Seki S, Kitahara T, Abe T, Minato K, Watanabe S et al. (1984). A novel human myelomonocytoid cell line, P39/Tsugane, derived from overt leukemia following myelodysplastic syndrome. Gann 75: 1100–1107.

    CAS  PubMed  Google Scholar 

  • Nakamori Y, Emoto M, Fukuda N, Taguchi A, Okuya S, Tajiri M et al. (2006). Links Myosin motor Myo1c and its receptor NEMO/IKK-gamma promote TNF-alpha-induced serine307 phosphorylation of IRS-1. J Cell Biol 173: 665–671.

    Article  CAS  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435: 677–681.

    Article  CAS  Google Scholar 

  • Smahi A, Courtois G, Rabia SH, Doffinger R, Bodemer C, Munnich A et al. (2002). The NF-κB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum Mol Genet 11: 2371–2375.

    Article  CAS  Google Scholar 

  • Steensma DP, Bennett JM . (2006). The myelodysplastic syndromes: diagnosis and treatment. Mayo Clin Proc 81: 104–130.

    Article  Google Scholar 

  • Vardiman JW, Harris NL, Brunning RD . (2002). The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100: 2292–2302.

    Article  CAS  Google Scholar 

  • Zamzami N, Kroemer G . (2004). Methods to measure membrane potential and permeability transition in the mitochondria during apoptosis. Methods Mol Biol 282: 103–116.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank YM Coic and F Baleux (Pasteur Institute, Paris, France) for expert synthesis of the peptides used in this work. GC receives a fellowship from Association NRB Vaincre le Cancer. CF is supported by Fondation pour la Recherche Médicale. JG and SB receive a fellowship from Cancéropôle Ile-de-France and Deutsche Forschungsgemeinschaft, respectively. This work was supported by grants from Association pour la Recherche contre le Cancer (to GK, MV and AI) and European Union (TransDeath, RIGHT), Fondation de France (Comité Leucémies), Cancéropôle Ile-de-France, Ligue contre le Cancer (Département de Seine St Denis), Association Laurette Fugain (to GK) and the International MDS Foundation (to TB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Kroemer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, G., Fabre, C., Braun, T. et al. Inhibition of NEMO, the regulatory subunit of the IKK complex, induces apoptosis in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 26, 2299–2307 (2007). https://doi.org/10.1038/sj.onc.1210043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210043

Keywords

This article is cited by

Search

Quick links