Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of IGF-I receptor in anchorage-independence attenuates GSK-3β constitutive phosphorylation and compromises growth and survival of medulloblastoma cell lines

Abstract

We have previously reported that insulin-like growth factor-I (IGF-I) supports growth and survival of mouse and human medulloblastoma cell lines, and that IGF-I receptor (IGF-IR) is constitutively phosphorylated in human medulloblastoma clinical samples. Here, we demonstrate that a specific inhibitor of insulin-like growth factor-I receptor (IGF-IR), NVP-AEW541, attenuated growth and survival of mouse (BsB8) and human (D384, Daoy) medulloblastoma cell lines. Cell cycle analysis demonstrated that G1 arrest and apoptosis contributed to the action of NVP-AEW54. Interestingly, very aggressive BsB8 cells, which derive from cerebellar tumors of transgenic mice expressing viral oncoprotein (large T-antigen from human polyomavirus JC) became much more sensitive to NVP-AEW541 when exposed to anchorage-independent culture conditions. This high sensitivity to NVP-AEW54 in suspension was accompanied by the loss of GSK-3β constitutive phosphorylation and was independent from T-antigen-mediated cellular events (Supplementary Materials). BsB8 cells were partially rescued from NVP-AEW541 by GSK3β inhibitor, lithium chloride and were sensitized by GSK3β activator, sodium nitroprusside (SNP). Importantly, human medulloblastoma cells, D384, which demonstrated partial resistance to NVP-AEW541 in suspension cultures, become much more sensitive following SNP-mediated GSK3β dephosphorylation (activation). Our results indicate that hypersensitivity of medulloblastoma cells in anchorage-independence is linked to GSK-3β activity and suggest that pharmacological intervention against IGF-IR with simultaneous activation of GSK3β could be highly effective against medulloblastomas, which have intrinsic ability of disseminating the CNS via cerebrospinal fluid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Andrews DW, Resnicoff M, Flanders AE, Kenyon L, Curtis M, Merli G et al. (2001). Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J Clin Oncol 19: 2189–2200.

    Article  CAS  Google Scholar 

  • Araki K, Sangai T, Miyamoto S, Maeda H, Zhang SC, Nakamura M et al. (2006). Inhibition of bone-derived insulin-like growth factors by a ligand-specific antibody suppresses the growth of human multiple myeloma in the human adult bone explanted in NOD/SCID mouse. Int J Cancer 118: 2602–2608.

    Article  CAS  Google Scholar 

  • Arevalo JC, Chao MV . (2005). Axonal growth: where neurotrophins meet Wnts. Curr Opin Cell Biol 17: 112–115.

    Article  CAS  Google Scholar 

  • Baserga R . (1994). Oncogenes and the strategy of growth factors. Cell 79: 927–930.

    Article  CAS  Google Scholar 

  • Baserga R . (1995). The insulin-like growth factor I receptor: a key to tumor growth? Cancer Res 55: 249–252.

    CAS  PubMed  Google Scholar 

  • Baserga R, Resnicoff M, Dews M . (1997). The IGF-I receptor and cancer. Endocrine 7: 99–102.

    Article  CAS  Google Scholar 

  • Beurel E, Kornprobst M, Blivet-Van Eggelpoel MJ, Ruiz-Ruiz C, Cadoret A, Capeau J et al. (2004). GSK-3beta inhibition by lithium confers resistance to chemotherapy-induced apoptosis through the repression of CD95 (Fas/APO-1) expression. Exp Cell Res 300: 354–364.

    Article  CAS  Google Scholar 

  • Blackburn RV, Galoforo SS, Berns CM, Motwani NM, Corry PM, Lee YJ . (1998). Differential induction of cell death in human glioma cell lines by sodium nitroprusside. Cancer 82: 1137–1145.

    Article  CAS  Google Scholar 

  • Chao JI, Kuo PC, Hsu TS . (2004). Down-regulation of survivin in nitric oxide-induced cell growth inhibition and apoptosis of the human lung carcinoma cells. J Biol Chem 279: 20267–20276.

    Article  CAS  Google Scholar 

  • Cheng ZJ, Gronholm T, Louhelainen M, Finckenberg P, Merasto S, Tikkanen I et al. (2005). Vascular and renal effects of vasopeptidase inhibition and angiotensin-converting enzyme blockade in spontaneously diabetic Goto-Kakizaki rats. J Hypertens 23: 1757–1770.

    Article  CAS  Google Scholar 

  • Cordes N, Van Beuningen D . (2003). Cell adhesion to the extracellular matrix protein fibronectin modulates radiation-dependent G2 phase arrest involving integrin-linked kinase (ILK) and glycogen synthase kinase-3beta (GSK-3beta) in vitro. Br J Cancer 88: 1470–1479.

    Article  CAS  Google Scholar 

  • Cui H, Meng Y, Bulleit RF . (1998). Inhibition of glycogen synthase kinase 3beta activity regulates proliferation of cultured cerebellar granule cells. Brain Res Dev Brain Res 111: 177–188.

    Article  CAS  Google Scholar 

  • D'Mello SR, Galli C, Ciotti T, Calissano P . (1993). Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci USA 90: 10989–10993.

    Article  CAS  Google Scholar 

  • Del Valle L, Enam S, Lassak A, Wang JY, Croul S, Khalili K et al. (2002a). Insulin-like growth factor i receptor activity in human medulloblastomas. Clin Cancer Res 8: 1822–1830.

    CAS  PubMed  Google Scholar 

  • Del Valle L, Wang JY, Lassak A, Peruzzi F, Croul S, Khalili K et al. (2002b). Insulin-like growth factor I receptor signaling system in JC virus T antigen-induced primitive neuroectodermal tumors-medulloblastomas. J Neurovirol 8 (Suppl 2): 138–147.

    Article  CAS  Google Scholar 

  • Desbois-Mouthon C, Blivet-Van Eggelpoel MJ, Beurel E, Boissan M, Delelo R, Cadoret A et al. (2002). Dysregulation of glycogen synthase kinase-3beta signaling in hepatocellular carcinoma cells. Hepatology 36: 1528–1536.

    Article  CAS  Google Scholar 

  • Desbois-Mouthon C, Cadoret A, Blivet-Van Eggelpoel MJ, Bertrand F, Cherqui G, Perret C et al. (2001). Insulin and IGF-1 stimulate the beta-catenin pathway through two signalling cascades involving GSK-3beta inhibition and Ras activation. Oncogene 20: 252–259.

    Article  CAS  Google Scholar 

  • Diehl JA, Cheng M, Roussel MF, Sherr CJ . (1998). Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12: 3499–3511.

    Article  CAS  Google Scholar 

  • Embi N, Rylatt DB, Cohen P . (1980). Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107: 519–527.

    Article  CAS  Google Scholar 

  • Garcia-Echeverria C, Pearson MA, Marti A, Meyer T, Mestan J, Zimmermann J et al. (2004). In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell 5: 231–239.

    Article  CAS  Google Scholar 

  • Glick RP, Unterman TG, Blaydes L, Hollis R . (1993). Insulin-like growth factors in central nervous system tumors. Ann NY Acad Sci 692: 223–229.

    Article  CAS  Google Scholar 

  • Gluckman P, Klempt N, Guan J, Mallard C, Sirimanne E, Dragunow M et al. (1992). A role for IGF-1 in the rescue of CNS neurons following hypoxic-ischemic injury. Biochem Biophys Res Commun 182: 593–599.

    Article  CAS  Google Scholar 

  • Hahn H, Wojnowski L, Specht K, Kappler R, Calzada-Wack J, Potter D et al. (2000). Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma. J Biol Chem 275: 28341–28344.

    Article  CAS  Google Scholar 

  • Hanger DP, Hughes K, Woodgett JR, Brion JP, Anderton BH . (1992). Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett 147: 58–62.

    Article  CAS  Google Scholar 

  • Ingham PW, McMahon AP . (2001). Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15: 3059–3087.

    Article  CAS  Google Scholar 

  • Jope RS . (2003). Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci 24: 441–443.

    Article  CAS  Google Scholar 

  • Kang UG, Seo MS, Roh MS, Kim Y, Yoon SC, Kim YS . (2004). The effects of clozapine on the GSK-3-mediated signaling pathway. FEBS Lett 560: 115–119.

    Article  CAS  Google Scholar 

  • Kenney AM, Cole MD, Rowitch DH . (2003). Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130: 15–28.

    Article  CAS  Google Scholar 

  • Kenney AM, Widlund HR, Rowitch DH . (2004). Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development 131: 217–228.

    Article  CAS  Google Scholar 

  • Kim AJ, Shi Y, Austin RC, Werstuck GH . (2005). Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J Cell Sci 118: 89–99.

    Article  CAS  Google Scholar 

  • Knoepfler PS, Kenney AM . (2006). Neural precursor cycling at sonic speed: N-Myc pedals, GSK-3 brakes. Cell Cycle 5: 47–52.

    Article  CAS  Google Scholar 

  • Krynska B, Otte J, Franks R, Khalili K, Croul S . (1999). Human ubiquitous JCV(CY) T-antigen gene induces brain tumors in experimental animals. Oncogene 18: 39–46.

    Article  CAS  Google Scholar 

  • Kumar AS, Naruszewicz I, Wang P, Leung-Hagesteijn C, Hannigan GE . (2004). ILKAP regulates ILK signaling and inhibits anchorage-independent growth. Oncogene 23: 3454–3461.

    Article  CAS  Google Scholar 

  • Kurihara M, Tokunaga Y, Ochi A, Kawaguchi T, Tsutsumi K, Shigematsu K et al. (1989). Expression of insulin-like growth factor I receptors in human brain tumors: comparison with epidermal growth factor receptor by using quantitative autoradiography. No To Shinkei 41: 719–725.

    CAS  PubMed  Google Scholar 

  • Lassak A, Del Valle L, Peruzzi F, Wang JY, Enam S, Croul S et al. (2002). Insulin receptor substrate 1 translocation to the nucleus by the human JC virus T-antigen. J Biol Chem 277: 17231–17238.

    Article  CAS  Google Scholar 

  • LeRoith D, Werner H, Faria TN, Kato H, Adamo M, Roberts Jr CT . (1993). Insulin-like growth factor receptors. Implications for nervous system function. Ann NY Acad Sci 692: 22–32.

    Article  CAS  Google Scholar 

  • Liao H, Wang JH . (2005). Biomembrane-permeable and Ribonuclease-resistant siRNA with enhanced activity. Oligonucleotides 15: 196–205.

    Article  CAS  Google Scholar 

  • Linseman DA, Butts BD, Precht TA, Phelps RA, Le SS, Laessig TA et al. (2004). Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 24: 9993–10002.

    Article  CAS  Google Scholar 

  • Patti R, Reddy CD, Geoerger B, Grotzer MA, Raghunath M, Sutton LN et al. (2000). Autocrine secreted insulin-like growth factor-I stimulates MAP kinase- dependent mitogenic effects in human primitive neuroectodermal tumor/medulloblastoma. Int J Oncol 16: 577–584.

    CAS  PubMed  Google Scholar 

  • Rao G, Pedone CA, Del Valle L, Reiss K, Holland EC, Fults DW . (2004). Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene 23: 6156–6162.

    Article  CAS  Google Scholar 

  • Reiss K . (2002). Insulin-like growth factor-I receptor – a potential therapeutic target in medulloblastomas. Expert Opin Ther Targets 6: 539–544.

    Article  CAS  Google Scholar 

  • Reiss K, D'Ambrosio C, Tu X, Tu C, Baserga R . (1998a). Inhibition of tumor growth by a dominant negative mutant of the insulin- like growth factor I receptor with a bystander effect. Clin Cancer Res 4: 2647–2655.

    CAS  PubMed  Google Scholar 

  • Reiss K, Valentinis B, Tu X, Xu SQ, Baserga R . (1998b). Molecular markers of IGF-I-mediated mitogenesis. Exp Cell Res 242: 361–372.

    Article  CAS  Google Scholar 

  • Reiss K, Yumet G, Shan S, Huang Z, Alnemri E, Srinivasula SM et al. (1999). Synthetic peptide sequence from the C-terminus of the insulin-like growth factor-I receptor that induces apoptosis and inhibition of tumor growth. J Cell Physiol 181: 124–135.

    Article  CAS  Google Scholar 

  • Resnicoff M, Tjuvajev J, Rotman HL, Abraham D, Curtis M, Aiken R et al. (1996). Regression of C6 rat brain tumors by cells expressing an antisense insulin-like growth factor I receptor RNA. J Exp Ther Oncol 1: 385–389.

    CAS  PubMed  Google Scholar 

  • Scotlandi K, Manara MC, Nicoletti G, Lollini PL, Lukas S, Benini S et al. (2005). Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res 65: 3868–3876.

    Article  CAS  Google Scholar 

  • Sell C, Baserga R, Rubin R . (1995). Insulin-like growth factor I (IGF-I) and the IGF-I receptor prevent etoposide-induced apoptosis. Cancer Res 55: 303–306.

    CAS  PubMed  Google Scholar 

  • Sjostrom SK, Finn G, Hahn WC, Rowitch DH, Kenney AM . (2005). The Cdk1 complex plays a prime role in regulating N-myc phosphorylation and turnover in neural precursors. Dev Cell 9: 327–338.

    Article  CAS  Google Scholar 

  • Szatmari E, Habas A, Yang P, Zheng JJ, Hagg T, Hetman M . (2005). A positive feedback loop between glycogen synthase kinase 3beta and protein phosphatase 1 after stimulation of NR2B NMDA receptors in forebrain neurons. J Biol Chem 280: 37526–37535.

    Article  CAS  Google Scholar 

  • Trojanek J, Ho T, Del Valle L, Nowicki M, Wang JY, Lassak A et al. (2003). Role of the insulin-like growth factor I/insulin receptor substrate 1 axis in Rad51 trafficking and DNA repair by homologous recombination. Mol Cell Biol 23: 7510–7524.

    Article  CAS  Google Scholar 

  • Valentinis B, Morrione A, Peruzzi F, Prisco M, Reiss K, Baserga R . (1999). Anti-apoptotic signaling of the IGF-I receptor in fibroblasts following loss of matrix adhesion. Oncogene 18: 1827–1836.

    Article  CAS  Google Scholar 

  • Valentinis B, Reiss K, Baserga R . (1998). Insulin-like growth factor-I-mediated survival from anoikis: role of cell aggregation and focal adhesion kinase. J Cell Physiol 176: 648–657.

    Article  CAS  Google Scholar 

  • Wang JY, Del Valle L, Gordon J, Rubini M, Romano G, Croul S et al. (2001). Activation of the IGF-IR system contributes to malignant growth of human and mouse medulloblastomas. Oncogene 20: 3857–3868.

    Article  CAS  Google Scholar 

  • Wang JY, Del Valle L, Peruzzi F, Trojanek J, Giordano A, Khalili K et al. (2004). Polyomaviruses and cancer – interplay between viral proteins and signal transduction pathways. J Exp Clin Cancer Res 23: 373–383.

    PubMed  Google Scholar 

  • Wang Y, Hailey J, Williams D, Wang Y, Lipari P, Malkowski M et al. (2005). Inhibition of insulin-like growth factor-I receptor (IGF-IR) signaling and tumor cell growth by a fully human neutralizing anti-IGF-IR antibody. Mol Cancer Ther 4: 1214–1221.

    Article  CAS  Google Scholar 

  • Yau CY, Wheeler JJ, Sutton KL, Hedley DW . (2005). Inhibition of integrin-linked kinase by a selective small molecule inhibitor, QLT0254, inhibits the PI3K/PKB/mTOR, Stat3, and FKHR pathways and tumor growth, and enhances gemcitabine-induced apoptosis in human orthotopic primary pancreatic cancer xenografts. Cancer Res 65: 1497–1504.

    Article  CAS  Google Scholar 

  • Zhang YJ, Xu YF, Liu YH, Yin J, Wang JZ . (2005). Nitric oxide induces tau hyperphosphorylation via glycogen synthase kinase-3beta activation. FEBS Lett 579: 6230–6236.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr Olaf Mundigl (Roche Diagnostics, Penzberg, Germany) for providing an antibody against phosphorylated IGF-IR, and Dr Martyn White for his editorial help. This work was supported by grants from NIH: RO1CA095518-01 (KR) and PO1 NS36466-06 (KK, KR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Reiss.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urbanska, K., Trojanek, J., Del Valle, L. et al. Inhibition of IGF-I receptor in anchorage-independence attenuates GSK-3β constitutive phosphorylation and compromises growth and survival of medulloblastoma cell lines. Oncogene 26, 2308–2317 (2007). https://doi.org/10.1038/sj.onc.1210018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210018

Keywords

This article is cited by

Search

Quick links