Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Using array-comparative genomic hybridization to define molecular portraits of primary breast cancers

Abstract

We analysed 148 primary breast cancers using BAC-arrays containing 287 clones representing cancer-related gene/loci to obtain genomic molecular portraits. Gains were detected in 136 tumors (91.9%) and losses in 123 tumors (83.1%). Eight tumors (5.4%) did not have any genomic aberrations in the 281 clones analysed. Common (more than 15% of the samples) gains were observed at 8q11–qtel, 1q21–qtel, 17q11–q12 and 11q13, whereas common losses were observed at 16q12–qtel, 11ptel–p15.5, 1p36–ptel, 17p11.2–p12 and 8ptel–p22. Patients with tumors registering either less than 5% (median value) or less than 11% (third quartile) total copy number changes had a better overall survival (log-rank test: P=0.0417 and P=0.0375, respectively). Unsupervised hierarchical clustering based on copy number changes identified four clusters. Women with tumors from the cluster with amplification of three regions containing known breast oncogenes (11q13, 17q12 and 20q13) had a worse prognosis. The good prognosis group (Nottingham Prognostic Index (NPI) 3.4) tumors had frequent loss of 16q24–qtel. Genes significantly associated with estrogen receptor (ER), Grade and NPI were used to build k-nearest neighbor (KNN) classifiers that predicted ER, Grade and NPI status in the test set with an average misclassification rate of 24.7, 25.7 and 35.7%, respectively. These data raise the prospect of generating a molecular taxonomy of breast cancer based on copy number profiling using tumor DNA, which may be more generally applicable than expression microarray analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

NPI:

Nottingham Prognostic Index

ER:

estrogen receptor

HR:

hazard ratio

References

  • Al-Kuraya K, Schraml P, Torhorst J, Tapia C, Zaharieva B, Novotny H et al. (2004). Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Res 64: 8534–8540.

    Article  CAS  Google Scholar 

  • Bogliolo M, Cabre O, Callen E, Castillo V, Creus A, Marcos R et al. (2002). The Fanconi anaemia genome stability and tumour suppressor network. Mutagenesis 17: 529–538.

    Article  CAS  Google Scholar 

  • Callagy G, Pharoah P, Chin SF, Sangan T, Daigo Y, Jackson L et al. (2005). Identification and validation of prognostic markers in breast cancer with the complementary use of array-CGH and tissue microarrays. J Pathol 205: 388–396.

    Article  CAS  Google Scholar 

  • Chin SF, Wang Q, Puisieux A, Caldas C . (2001). Absence of rearrangements in the BRCA2 gene in human cancers. Br J Cancer 84: 193–195.

    Article  CAS  Google Scholar 

  • Cingoz S, Altungoz O, Canda T, Saydam S, Aksakoglu G, Sakizli M . (2003). DNA copy number changes detected by comparative genomic hybridization and their association with clinicopathologic parameters in breast tumors. Cancer Genet Cytogenet 145: 108–114.

    Article  CAS  Google Scholar 

  • Daigo Y, Chin SF, Gorringe KL, Bobrow LG, Ponder BA, Pharoah PD et al. (2001). Degenerate oligonucleotide primed-polymerase chain reaction-based array comparative genomic hybridization for extensive amplicon profiling of breast cancers: a new approach for the molecular analysis of paraffin-embedded cancer tissue. Am J Pathol 158: 1623–1631.

    Article  CAS  Google Scholar 

  • Elston CW, Ellis IO . (1991). Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19: 403–410.

    Article  CAS  Google Scholar 

  • Forozan F, Karhu R, Kononen J, Kallioniemi A, Kallioniemi OP . (1997). Genome screening by comparative genomic hybridization. Trends Genet 13: 405–409.

    Article  CAS  Google Scholar 

  • Fridlyand J, Snijders AM, Ylstra B, Li H, Olshen A, Segraves R et al. (2006). Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer. 6: 96.

    Article  Google Scholar 

  • Gilchrist KW, Kalish L, Gould VE, Hirschl S, Imbriglia JE, Levy WM et al. (1985). Interobserver reproducibility of histopathological features in stage II breast cancer. An ECOG study. Breast Cancer Res Treat 5: 3–10.

    Article  CAS  Google Scholar 

  • Glinsky GV, Higashiyama T, Glinskii AB . (2004). Classification of human breast cancer using gene expression profiling as a component of the survival predictor algorithm. Clin Cancer Res 10: 2272–2283.

    Article  CAS  Google Scholar 

  • Gunther K, Merkelbach-Bruse S, Amo-Takyi BK, Handt S, Schroder W, Tietze L . (2001). Differences in genetic alterations between primary lobular and ductal breast cancers detected by comparative genomic hybridization. J Pathol 193: 40–47.

    Article  CAS  Google Scholar 

  • Heidenblad M, Lindgren D, Veltman JA, Jonson T, Mahlamaki EH, Gorunova L et al. (2005). Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications. Oncogene 24: 1794–1801.

    Article  CAS  Google Scholar 

  • Hodgson G, Hager JH, Volik S, Hariono S, Wernick M, Moore D et al. (2001). Genome scanning with array CGH delineates regional alterations in mouse islet carcinomas. Nat Genet 29: 459–464.

    Article  CAS  Google Scholar 

  • James LA, Mitchell EL, Menasce L, Varley JM . (1997). Comparative genomic hybridisation of ductal carcinoma in situ of the breast: identification of regions of DNA amplification and deletion in common with invasive breast carcinoma. Oncogene 14: 1059–1065.

    Article  CAS  Google Scholar 

  • Jones C, Ford E, Gillett C, Ryder K, Merrett S, Reis-Filho JS et al. (2004). Molecular cytogenetic identification of subgroups of grade III invasive ductal breast carcinomas with different clinical outcomes. Clin Cancer Res 10: 5988–5997.

    Article  CAS  Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Piper J, Tanner M, Stokke T, Chen L et al. (1994). Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA 91: 2156–2160.

    Article  CAS  Google Scholar 

  • Kim YH, Girard L, Giacomini CP, Wang P, Hernandez-Boussard T, Tibshirani R et al. (2005). Combined microarray analysis of small cell lung cancer reveals altered apoptotic balance and distinct expression signatures of MYC family gene amplification. Oncogene 25: 130–138.

    Article  Google Scholar 

  • Korsching E, Packeisen J, Helms MW, Kersting C, Voss R, van Diest PJ et al. (2004). Deciphering a subgroup of breast carcinomas with putative progression of grade during carcinogenesis revealed by comparative genomic hybridisation (CGH) and immunohistochemistry. Br J Cancer 90: 1422–1428.

    Article  CAS  Google Scholar 

  • Landi MT, Kanetsky PA, Tsang S, Gold B, Munroe D, Rebbeck T et al. (2005). MC1R, ASIP, and DNA repair in sporadic and familial melanoma in a Mediterranean population. J Natl Cancer Inst 97: 998–1007.

    Article  CAS  Google Scholar 

  • Loo LW, Grove DI, Williams EM, Neal CL, Cousens LA, Schubert EL et al. (2004). Array comparative genomic hybridization analysis of genomic alterations in breast cancer subtypes. Cancer Res 64: 8541–8549.

    Article  CAS  Google Scholar 

  • Maass N, Rosel F, Schem C, Hitomi J, Jonat W, Nagasaki K . (2002). Amplification of the BCAS2 gene at chromosome 1p13.3–21 in human primary breast cancer. Cancer Lett 185: 219–223.

    Article  CAS  Google Scholar 

  • McShane LM, Radmacher MD, Freidlin B, Yu R, Li MC, Simon R . (2002). Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data. Bioinformatics 18: 1462–1469.

    Article  CAS  Google Scholar 

  • Naylor TL, Greshock J, Wang Y, Colligon T, Yu QC, Clemmer V et al. (2005). High resolution genomic analysis of sporadic breast cancer using array-based comparative genomic hybridization. Breast Cancer Res 7: R1186–R1198.

    Article  CAS  Google Scholar 

  • Nessling M, Richter K, Schwaenen C, Roerig P, Wrobel G, Wessendorf S et al. (2005). Candidate genes in breast cancer revealed by microarray-based comparative genomic hybridization of archived tissue. Cancer Res 65: 439–447.

    CAS  Google Scholar 

  • Nupponen NN, Isola J, Visakorpi T . (2000). Mapping the amplification of EIF3S3 in breast and prostate cancer. Genes Chromosomes Cancer 28: 203–210.

    Article  CAS  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. (2000). Molecular portraits of human breast tumours. Nature 406: 747–752.

    Article  CAS  Google Scholar 

  • Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D et al. (1998). High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20: 207–211.

    Article  CAS  Google Scholar 

  • Piper J, Stegenga S, Pestova E, Marble H, Lucas M, Wilber K et al. (2002). An objective method for detecting copy number change in CGH microarray experiments. Proceedings of the Third Euroconference on Quantitative Molecular Cytogenetics. Rosenon, Stockholm, Sweden 4–6 July 2002; Rosenon, Stockholm, Sweden, pp 109–114.

  • Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE et al. (2002). Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci USA 99: 12963–12968.

    Article  CAS  Google Scholar 

  • Rennstam K, Ahlstedt-Soini M, Baldetorp B, Bendahl PO, Borg A, Karhu R et al. (2003). Patterns of chromosomal imbalances defines subgroups of breast cancer with distinct clinical features and prognosis. A study of 305 tumors by comparative genomic hybridization. Cancer Res 63: 8861–8868.

    CAS  PubMed  Google Scholar 

  • Reyal F, Stransky N, Bernard-Pierrot I, Vincent-Salomon A, de Rycke Y, Elvin P et al. (2005). Visualizing chromosomes as transcriptome correlation maps: evidence of chromosomal domains containing co-expressed genes – a study of 130 invasive ductal breast carcinomas. Cancer Res 65: 1376–1383.

    Article  CAS  Google Scholar 

  • Roylance R, Gorman P, Harris W, Liebmann R, Barnes D, Hanby A et al. (1999). Comparative genomic hybridization of breast tumors stratified by histological grade reveals new insights into the biological progression of breast cancer. Cancer Res 59: 1433–1436.

    CAS  Google Scholar 

  • Smyth GK, Yang YH, Speed T . (2003). Statistical issues in cDNA microarray data analysis. Methods Mol Biol 224: 111–136.

    CAS  PubMed  Google Scholar 

  • Soares R, Balogh G, Guo S, Gartner F, Russo J, Schmitt F . (2004). Evidence for the notch signaling pathway on the role of estrogen in angiogenesis. Mol Endocrinol 18: 2333–2343.

    Article  CAS  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98: 10869–10874.

    Article  CAS  Google Scholar 

  • Stange DE, Radlwimmer B, Schubert F, Traub F, Pich A, Toedt G et al. (2006). High-resolution genomic profiling reveals association of chromosomal aberrations on 1q and 16p with histologic and genetic subgroups of invasive breast cancer. Clin Cancer Res. 12: 345–352.

    Article  CAS  Google Scholar 

  • Storey JD, Tibshirani R . (2003). Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100: 9440–9445.

    Article  CAS  Google Scholar 

  • Tirkkonen M, Tanner M, Karhu R, Kallioniemi A, Isola J, Kallioniemi OP . (1998). Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosomes Cancer 21: 177–184.

    Article  CAS  Google Scholar 

  • Tsarouha H, Pandis N, Bardi G, Teixeira MR, Andersen JA, Heim S . (1999). Karyotypic evolution in breast carcinomas with i(1)(q10) and der(1;16)(q10;p10) as the primary chromosome abnormality. Cancer Genet Cytogenet 113: 156–161.

    Article  CAS  Google Scholar 

  • van‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.

    Article  Google Scholar 

  • Wang DY, Fulthorpe R, Liss SN, Edwards EA . (2004). Identification of estrogen-responsive genes by complementary deoxyribonucleic acid microarray and characterization of a novel early estrogen-induced gene: EEIG1. Mol Endocrinol 18: 402–411.

    Article  CAS  Google Scholar 

  • Wenger CR, Beardslee S, Owens MA, Pounds G, Oldaker T, Vendely P et al. (1993). DNA ploidy, S-phase, and steroid receptors in more than 127,000 breast cancer patients. Breast Cancer Res Treat 28: 9–20.

    Article  CAS  Google Scholar 

  • Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP . (2004). Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J 23: 1155–1165.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Vysis for providing all the reagents and Teresa Ruffalo for technical help. The work was funded by Cancer Research UK. NLB-M was supported by Fundação para a Ciência e a Tecnologia, Portugal (Fellowship SFRH/BD/2914/2000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Caldas.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, SF., Wang, Y., Thorne, N. et al. Using array-comparative genomic hybridization to define molecular portraits of primary breast cancers. Oncogene 26, 1959–1970 (2007). https://doi.org/10.1038/sj.onc.1209985

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209985

Keywords

This article is cited by

Search

Quick links