Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HRPAP20: a novel calmodulin-binding protein that increases breast cancer cell invasion

Abstract

We previously reported the identification of HRPAP20 (hormone-regulated proliferation-associated protein 20), a novel hormone-regulated, proliferation-associated protein. In tumor cell lines, constitutive HRPAP20 expression enhanced proliferation and suppressed apoptosis, characteristics frequently associated with malignant progression. Here, we report that highly invasive breast cancer cell lines and human breast tumor specimens express elevated HRPAP20, which in transfection experiments in MCF-7 and MDA-MB-231 cells, increased invasion. Results from mechanistic studies revealed that HRPAP20 bound to calmodulin (CaM) via a conserved CaM-binding motif. Transfection of MCF-7 breast cancer cells with HRPAP20 harboring a mutated CaM-binding motif (HRPAP20K73A) inhibited its interaction with CaM and failed to increase invasion. Other experiments revealed that transfection with HRPAP20, but not HRPAP20K73A, increased secretion of matrix metalloproteinase-9 (MMP-9). Moreover, knockdown of HRPAP20 with small interfering RNA in MCF-7/HRPAP20 transfectants and wild-type MDA-MB-231 cells reduced invasion and inhibited secretion of MMP-9. Together these observations suggest that HRPAP20 may be an important regulator of breast tumor cell invasion by a CaM-mediated mechanism that leads to increased MMP-9 secretion. We conclude that dysregulation of HRPAP20 expression in tumor cells may contribute to the observed phenotypic changes associated with breast cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Agell N, Bachs O, Rocamora N, Villalonga P . (2002). Modulation of the Ras/Raf/MEK/ERK pathway by Ca (2+), and calmodulin. Cell Signal 14: 649–654.

    Article  CAS  Google Scholar 

  • Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM et al. (1987). A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47: 3239–3245.

    CAS  PubMed  Google Scholar 

  • Arafah BM, Griffin P, Gordon NH, Pearson OH . (1986). Influence of tamoxifen and estradiol on the growth of human breast cancer cells in vitro. Cancer Res 46: 3268–3272.

    CAS  PubMed  Google Scholar 

  • Bagchi IC, Huang QH, Means AR . (1992). Identification of amino acids essential for calmodulin binding and activation of smooth muscle myosin light chain kinase. J Biol Chem 267: 3024–3029.

    CAS  PubMed  Google Scholar 

  • Bartsch JE, Staren ED, Appert HE . (2003). Matrix metalloproteinase expression in breast cancer. J Surg Res 110: 383–392.

    Article  CAS  Google Scholar 

  • Boehning D, Sedaghat L, Sedlak T, Snyder S . (2004). Heme oxygenase-2 is activated by calcium-calmodulin. J Biol Chem 279: 30927–30930.

    Article  CAS  Google Scholar 

  • Crivici A, Ikura M . (1995). Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct 24: 85–116.

    Article  CAS  Google Scholar 

  • Di Carlo A, Terracciano D, Mariano A, Macchia V . (2005). Matrix metalloproteinase-2 and matrix metalloproteinase-9 type IV collagenases in serum of patients with pleural effusions. Int J Oncol 26: 1363–1368.

    CAS  PubMed  Google Scholar 

  • Dumitrescu RG, Cotarla I . (2005). Understanding breast cancer risk – where do we stand in 2005? J Cell Mol Med 9: 208–221.

    Article  CAS  Google Scholar 

  • Ellis MJ . (2003). Breast cancer gene expression analysis – the case for dynamic profiling. Adv Exp Med Biol 532: 223–234.

    Article  CAS  Google Scholar 

  • Enslen H, Tokumitsu H, Stork PJ, Davis RJ, Soderling TR . (1996). Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade. Proc Natl Acad Sci USA 93: 10803–10808.

    Article  CAS  Google Scholar 

  • Fernandez CA, Yan L, Louis G, Yang J, Kutok JL, Moses MA . (2005). The matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin complex plays a role in breast tumor growth and is present in the urine of breast cancer patients. Clin Cancer Res 11: 5390–5395.

    Article  CAS  Google Scholar 

  • Fitzsimons DP, Herring BP, Stull JT, Gallagher PJ . (1992). Identification of basic residues involved in activation and calmodulin binding of rabbit smooth muscle myosin light chain kinase. J Biol Chem 267: 23903–23909.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garbett EA, Reed MWR, Stephenson TJ, Brown NJ . (2000). Proteolysis in human breast cancer. Mol Pathol 53: 99–106.

    Article  CAS  Google Scholar 

  • Glinsky GV, Glinsky VV, Ivanova AB, Hueser CN . (1997). Apoptosis and metastasis: increased apoptosis resistance of metastatic cancer cells is associated with the profound deficiency of apoptosis execution mechanisms. Cancer Lett 115: 185–193.

    Article  CAS  Google Scholar 

  • Haupt LM, Thompson EW, Trezise AE, Irving RE, Irving MG, Griffiths LR . (2006). In vitro and in vivo MMP gene expression localisation by in situ-RT–PCR in cell culture and paraffin embedded human breast cancer cell line xenografts. BMC Cancer 6: 18.

    Article  Google Scholar 

  • Hoeflich KP, Ikura M . (2002). Calmodulin in action: diversity in target recognition and acivation mechanisms. Cell 108: 739–742.

    Article  CAS  Google Scholar 

  • James P, Vorherr T, Carafoli E . (1995). Calmodulin-binding domains: just two faced or multi-faceted? Trends Biochem Sci 20: 38–42.

    Article  CAS  Google Scholar 

  • Karp CM, Pan H, Zhang M, Buckley DJ, Schuler LA, Buckley AR . (2004). Identification of HRPAP20: a novel phosphoprotein that enhances growth and survival in hormone-responsive tumor cells. Cancer Res 64: 1016–1025.

    Article  CAS  Google Scholar 

  • La Rocca G, Pucci-Minafra I, Marrazzo A, Taormina P, Minafra S . (2004). Zymographic detection and clinical correlations of MMP-2 and MMP-9 in breast cancer sera. Br J Cancer 90: 1414–1421.

    Article  CAS  Google Scholar 

  • Leonessa F, Boulay V, Wright A, Thompson EW, Brunner N, Clarke R . (1992). The biology of breast tumor progression. Acquisition of hormone independence and resistance to cytotoxic drugs. Acta Oncol 31: 115–123.

    Article  CAS  Google Scholar 

  • Li HC, Cao DC, Liu Y, Hou YF, Wu J, Lu JS et al. (2004). Prognostic value of matrix metalloproteinases (MMP-2 and MMP-9) in patients with lymph node-negative breast carcinoma. Breast Cancer Res Treat 88: 75–85.

    Article  CAS  Google Scholar 

  • Mariani G . (2005). Molecular staging of the sentinel lymph node in melanoma patients: correlation with clinical outcome. Ann Oncol 16: 191–194.

    Article  Google Scholar 

  • Mendes O, Kim HT, Stoica G . (2005). Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis 22: 237–246.

    Article  CAS  Google Scholar 

  • Miyazaki K, Funahashi K, Umeda M, Nakano A . (1994). Gelatinase A and APP. Nature 368: 695–696.

    Article  CAS  Google Scholar 

  • Murphy G, Reynolds JJ, Hembry RM . (1989). Metalloproteinases and cancer invasion and metastasis. Int J Cancer 44: 757–760.

    Article  CAS  Google Scholar 

  • Nakajima M, Welch DR, Belloni PN, Nicolson GL . (1987). Serum and plasma M(r) 92,000 progelatinase levels correlate with spontaneous metastasis of rat 13762NF mammary adenocarcinoma. Cancer Res 47: 4869–4876.

    CAS  PubMed  Google Scholar 

  • Paquette B, Bisson M, Baptiste C, Therriault H, Lemay R . (2005). Invasiveness of breast cancer cells MDA-MB-231 through extracellular matrix is increased by the estradiol metabolite 4-hydroxyestradiol. Int J Cancer 113: 706–711.

    Article  CAS  Google Scholar 

  • Pellikainen JM, Ropponen KM, Kataja VV, Kellokoski JK, Eskelinen MJ, Kosma VM . (2004). Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in breast cancer with a special reference to activator protein-2, HER2, and prognosis. Clin Cancer Res 10: 7621–7628.

    Article  CAS  Google Scholar 

  • Przybylowska K, Kluczna A, Zadrozny M, Krawczyk T, Kulig A, Rykala J et al. (2005). Polymorphisms of the promoter regions of matrix metalloproteinases genes MMP-1 and MMP-9 in breast cancer. Breast Cancer Res Treat 95: 65–72.

    Article  Google Scholar 

  • Rahko E, Jukkola A, Melkko J, Paavo P, Bloigu R, Talvensaari-Mattila A et al. (2004). Matrix metalloproteinase-9 (MMP-9) immunoreactive protein has modest prognostic value in locally advanced breast carcinoma patients treated with an adjuvant antiestrogen therapy. Anticancer Res 24: 4247–4253.

    CAS  PubMed  Google Scholar 

  • Ranuncolo SM, Armanasco E, Cresta C, Bal De Kier Joffe E, Puricelli L . (2003). Plasma MMP-9 (92 kDa-MMP) activity is useful in the follow-up and in the assessment of prognosis in breast cancer patients. Int J Cancer 106: 745–751.

    Article  CAS  Google Scholar 

  • Reich R, Thompson EW, Iwamoto Y, Martin GR, Deason JR, Fuller GC et al. (1988). Effects of inhibitors of plasminogen activator, serine proteinases, and collagenase IV on the invasion of basement membranes by metastatic cells. Cancer Res 48: 3307–3312.

    CAS  PubMed  Google Scholar 

  • Repesh LA . (1989). A new in vitro assay for quantitating tumor cell invasion. Invas Metast 9: 192–208.

    CAS  Google Scholar 

  • Rhoads AR, Friedberg F . (1997). Sequence motifs for calmodulin recognition. FASEB J 11: 331–340.

    Article  CAS  Google Scholar 

  • San Jose E, Benguria A, Geller P, Villalobo A . (1992). Calmodulin inhibits the epidermal growth factor receptor tyrosine kinase. J Biol Chem 267: 15237–15245.

    CAS  PubMed  Google Scholar 

  • Schmitt M, Janicke F, Grae VH . (1990). Tumour-associated fibrinolysis: the prognostic relevance of plasminogen activators uPA and tPA in human breast cancer. Blood Coagul Fibrinolysis 1: 695–702.

    CAS  PubMed  Google Scholar 

  • Sliva D . (2004). Signaling pathways responsible for cancer cell invasion as targets for cancer therapy. Curr Cancer Drug Targets 4: 327–336.

    Article  CAS  Google Scholar 

  • Strobl JS, Wonderlin WF, Flynn DC . (1995). Mitogenic signal transduction in human breast cancer cells. Gen Pharmacol 26: 1643–1649.

    Article  CAS  Google Scholar 

  • Stuelten CH, DaCosta BS, Arany PR, Karpova TS, Stetler-Stevenson WG, Roberts AB . (2005). Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J Cell Sci 118 (Part 10): 2143–2153.

    Article  CAS  Google Scholar 

  • Subramaniam DS, Isaacs C . (2005). Utilizing prognostic and predictive factors in breast cancer. Curr Treat Options Oncol 6: 147–159.

    Article  Google Scholar 

  • Suzuki M, Raab G, Moses MA, Fernandez CA, Klagsbrun M . (1997). Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site. J Biol Chem 272: 31730–31737.

    Article  CAS  Google Scholar 

  • Talvensaari-Mattila A, Turpeenniemi-Hujanen T . (2005). Preoperative serum MMP-9 immunoreactive protein is a prognostic indicator for relapse-free survival in breast carcinoma. Cancer Lett 217: 237–242.

    Article  CAS  Google Scholar 

  • Weigelt B, Peterse JL, Van’t Veer LJ . (2004). Detection of metastases in sentinel lymph nodes of breast cancer patients by multiple mRNA markers. Br J Cancer 90: 1531–1537.

    Article  CAS  Google Scholar 

  • Williams GT, Smith CA . (1993). Molecular regulation of apoptosis: genetic controls on cell death. Cell 74: 777–779.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Susan G Komen Breast Cancer Foundation (CMK, Dissertation Research Award) and the University of Cincinnati Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A R Buckley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karp, C., Shukla, M., Buckley, D. et al. HRPAP20: a novel calmodulin-binding protein that increases breast cancer cell invasion. Oncogene 26, 1780–1788 (2007). https://doi.org/10.1038/sj.onc.1209980

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209980

Keywords

This article is cited by

Search

Quick links