Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Tumour-related microRNAs functions in Caenorhabditis elegans

Abstract

Altering cell proliferation and differentiation are usually key events leading to cancer. As originally demonstrated by Sydney Brenner in 1960s, the nematode Caenorhabditis elegans represents an animal model of choice to study mechanisms important to maintain proper cellular behaviour. This round worm has helped to elucidate components as well as new cellular pathways required for animal development. Among them, the discovery of the programmed cell death and non-coding RNAs (microRNAs) controlling gene expression are two remarkable examples. Recently, two studies have demonstrated, once again, that using C. elegans can help gathering insights on cellular mechanisms leading to tumour formation. Two microRNAs, miR-84 and miR-61, control the expression of the oncogene orthologues Ras and Vav indicating their capacity to act as tumour suppressors. These observations demonstrate that uncovering the function of microRNAs is important to increase our understanding of cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR et al. (2005). The let-7 microRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell 9: 403–414.

    Article  CAS  Google Scholar 

  • Abrahante JE, Daul AL, Li M, Volk ML, Tennessen JM, Miller EA et al. (2003). The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev Cell 4: 625–637.

    Article  CAS  Google Scholar 

  • Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D . (2003). MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13: 807–818.

    Article  CAS  Google Scholar 

  • Beitel GJ, Clark SG, Horvitz HR . (1990). Caenorhabditis elegans Ras gene let-60 acts as a switch in the pathway of vulval induction. Nature 348: 503–509.

    Article  CAS  Google Scholar 

  • Bustelo XR . (2001). Vav proteins, adaptors and cell signaling. Oncogene 20: 6372–6381.

    Article  CAS  Google Scholar 

  • Chang S, Johnston Jr RJ, Frokjaer-Jensen C, Lockery S, Hobert O . (2004). MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 430: 785–789.

    Article  CAS  Google Scholar 

  • Denicola G, Tuveson DA . (2005). VAV1: a new target in pancreatic cancer? Cancer Biol Ther 4: 509–511.

    Article  CAS  Google Scholar 

  • Grad Y, Aach J, Hayes GD, Reinhart BJ, Church GM, Ruvkun G et al. (2003). Computational and experimental identification of C. elegans microRNAs. Mol Cell 11: 1253–1263.

    Article  CAS  Google Scholar 

  • Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I et al. (2001). Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106: 23–34.

    Article  CAS  Google Scholar 

  • Grosshans H, Johnson T, Reinert KL, Gerstein M, Slack FJ . (2005). The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev Cell 8: 321–330.

    Article  CAS  Google Scholar 

  • Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH . (1997). Integrating genetic approaches into the discovery of anticancer drugs. Science 278: 1064–1068.

    Article  CAS  Google Scholar 

  • Hornstein I, Pikarsky E, Groysman M, Amir G, Peylan-Ramu N, Katzav S . (2003). The haematopoietic specific signal transducer Vav1 is expressed in a subset of human neuroblastomas. J Pathol 199: 526–533.

    Article  CAS  Google Scholar 

  • Hutvágner G, Simard MJ, Mello CC, Zamore PD . (2004). Sequence-specific inhibition of small RNA function. PLoS Biol 2: E98.

    Article  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. (2005). RAS is regulated by the let-7 microRNA family. Cell 120: 635–647.

    Article  CAS  Google Scholar 

  • Johnston Jr RJ, Chang S, Etchberger JF, Ortiz CO, Hobert O . (2005). MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc Natl Acad Sci USA 102: 12449–12454.

    Article  CAS  Google Scholar 

  • Johnston RJ, Hobert O . (2003). A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426: 845–849.

    Article  CAS  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG, Bartel DP . (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858–862.

    Article  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V . (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854.

    Article  CAS  Google Scholar 

  • Li M, Jones-Rhoades MW, Lau NC, Bartel DP, Rougvie AE . (2005). Regulatory mutations of mir-48, a C. elegans let-7 family microRNA, cause developmental timing defects. Dev Cell 9: 415–422.

    Article  CAS  Google Scholar 

  • Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW et al. (2003). The microRNAs of Caenorhabditis elegans. Genes Dev 17: 991–1008.

    Article  CAS  Google Scholar 

  • Lin SY, Johnson SM, Abraham M, Vella MC, Pasquinelli A, Gamberi C et al. (2003). The C. elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev Cell 4: 639–650.

    Article  CAS  Google Scholar 

  • Malumbres M, Barbacid M . (2003). RAS oncogenes: the first 30 years. Nat Rev Cancer 3: 459–465.

    Article  CAS  Google Scholar 

  • Meister G, Landthaler M, Dorsett Y, Tuschl T . (2004). Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10: 544–550.

    Article  CAS  Google Scholar 

  • Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B et al. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408: 86–89.

    Article  CAS  Google Scholar 

  • Poulin G, Nandakumar R, Ahringer J . (2004). Genome-wide RNAi screens in Caenorhabditis elegans: impact on cancer research. Oncogene 23: 8340–8345.

    Article  CAS  Google Scholar 

  • Radtke F, Raj K . (2003). The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3: 756–767.

    Article  CAS  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901–906.

    Article  CAS  Google Scholar 

  • Schumacher B, Gartner A . (2006). Translational regulation of p53 as a potential tumor therapy target. Future Oncol 2: 145–153.

    Article  CAS  Google Scholar 

  • Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G . (2000). The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5: 659–669.

    Article  CAS  Google Scholar 

  • Sternberg PW . (2005). Vulval development. In: Wormbook (ed). The C. elegans Research Community. WormBook, doi/10.1895/wormbook.1.6.1, http://www.wormbook.org.

  • Sternberg PW, Horvitz HR . (1989). The combined action of two intercellular signaling pathways specifies three cell fates during vulval induction in C. elegans. Cell 58: 679–693.

    Article  CAS  Google Scholar 

  • Sundaram MV . (2005). The love-hate relationship between Ras and Notch. Genes Dev 19: 1825–1839.

    Article  CAS  Google Scholar 

  • Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64: 3753–3756.

    Article  CAS  Google Scholar 

  • Tarakhovsky A, Turner M, Schaal S, Mee PJ, Duddy LP, Rajewsky K et al. (1995). Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 374: 467–470.

    Article  CAS  Google Scholar 

  • Wightman B, Ha I, Ruvkun G . (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855–862.

    Article  CAS  Google Scholar 

  • Yoo AS, Greenwald I . (2005). LIN-12/Notch activation leads to microRNA-mediated down-regulation of Vav in C. elegans. Science 310: 1330–1333.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Jean-Yves Masson, Dr Gyorgy Hutvágner and members of the Simard laboratory for comments on the manuscript. The Ras/let-60 mutant strain has been kindly provided by Dr Christian Rocheleau. This work is supported by the Institute of Genetics from Canadian Institutes of Health Research (CIHR). MJS is a Junior 1 scholar from the Fonds en Recherche de la Santé du Québec (FRSQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J Simard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jannot, G., Simard, M. Tumour-related microRNAs functions in Caenorhabditis elegans. Oncogene 25, 6197–6201 (2006). https://doi.org/10.1038/sj.onc.1209921

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209921

Keywords

This article is cited by

Search

Quick links