Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Role of E2F3 expression in modulating cellular proliferation rate in human bladder and prostate cancer cells

Abstract

Amplification and overexpression of the E2F3 gene at 6p22 in human bladder cancer is associated with increased tumour stage, grade and proliferation index, and in prostate cancer E2F3 overexpression is linked to tumour aggressiveness. We first used small interfering RNA technology to confirm the potential importance of E2F3 overexpression in bladder cancer development. Knockdown of E2F3 expression in bladder cells containing the 6p22 amplicon strongly reduced the extent of bromodeoxyuridine (BrdU) incorporation and the rate of cellular proliferation. In contrast, knockdown of CDKAL1/FLJ20342, another proposed oncogene, from this amplicon had no effect. Expression cDNA microarray analysis on bladder cancer cells following E2F3 knockdown was then used to identify genes regulated by E2F3, leading to the identification of known E2F3 targets such as Cyclin A and CDC2 and novel targets including pituitary tumour transforming gene 1, Polo-like kinase 1 (PLK1) and Caveolin-2. For both bladder and prostate cancer, we have proposed that E2F3 protein overexpression may cooperate with removal of the E2F inhibitor retinoblastoma tumor suppressor protein (pRB) to drive cellular proliferation. In support of this model, we found that ectopic expression of E2F3a enhanced the BrdU incorporation, a marker of cellular proliferation rate, of prostate cancer DU145 cells, which lack pRB, but had no effect on the proliferation rate of PC3 prostate cancer cells that express wild-type pRB. BrdU incorporation in PC3 cells could, however, be increased by overexpressing E2F3a in cells depleted of pRB. When taken together, these observations indicate that E2F3 levels have a critical role in modifying cellular proliferation rate in human bladder and prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Best CJ, Gillespie JW, Yi Y, Chandramouli GV, Perlmutter MA, Gathright Y et al. (2005). Molecular alterations in primary prostate cancer after androgen ablation therapy. Clin Cancer Res 11: 6823–6834.

    Article  CAS  Google Scholar 

  • Bidus MA, Risinger JI, Chandramouli GV, Dainty LA, Litzi TJ, Berchuck A et al. (2006). Prediction of lymph node metastasis in patients with endometrioid endometrial cancer using expression microarray. Clin Cancer Res 12: 83–88.

    Article  CAS  Google Scholar 

  • Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D et al. (2006). Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439: 353–357.

    Article  CAS  Google Scholar 

  • Black EP, Hallstrom T, Dressman HK, West M, Nevins JR . (2005). Distinctions in the specificity of E2F function revealed by gene expression signatures. Proc Natl Acad Sci USA 102: 15948–15953.

    Article  CAS  Google Scholar 

  • Bookstein R, Shew PL, Scully P, Lee WH . (1990). Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science 247: 712–715.

    Article  CAS  Google Scholar 

  • Bruch J, Schulz WA, Haussler J, Melzner I, Bruderlein S, Moller P et al. (2000). Delineation of the 6p22 amplification unit in urinary bladder carcinoma cell lines. Cancer Res 60: 4526–4530.

    CAS  PubMed  Google Scholar 

  • Chakravarti A, Heydon K, Wu CL, Hammond E, Pollack A, Roach M et al. (2003). Loss of p16 expression is of prognostic significance in locally advanced prostate cancer: an analysis from the Radiation Therapy Oncology Group protocol 86-10. J Clin Oncol 21: 3328–3334.

    Article  CAS  Google Scholar 

  • Clark J, Edwards S, John M, Flohr P, Gordon T, Maillard K et al. (2002). Identification of amplified and expressed genes in breast cancer by comparative hybridization onto microarrays of randomly selected cDNA clones. Genes Chromosomes Cancer 34: 104–114.

    Article  CAS  Google Scholar 

  • Dolbeare F . (1996). Bromodeoxyuridine: a diagnostic tool in biology and medicine, Part III. Proliferation in normal, injured and diseased tissue, growth factors, differentiation, DNA replication sites and in situ hybridization. Histochem J 28: 531–575.

    Article  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Weber K, Tuschl T . (2002). Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26: 199–213.

    Article  CAS  Google Scholar 

  • Feber A, Clark J, Goodwin G, Dodson AR, Smith PH, Fletcher A et al. (2004). Amplification and overexpression of E2F3 in human bladder cancer. Oncogene 23: 1627–1630.

    Article  CAS  Google Scholar 

  • Fong A, Garcia E, Gwynn L, Lisanti MP, Fazzari MJ, Li M . (2003). Expression of caveolin-1 and caveolin-2 in urothelial carcinoma of the urinary bladder correlates with tumor grade and squamous differentiation. Am J Clin Pathol 120: 93–100.

    Article  CAS  Google Scholar 

  • Foster CS, Falconer A, Dodson AR, Norman AR, Dennis N, Fletcher A et al. (2004). Transcription factor E2F3 overexpressed in prostate cancer independently predicts clinical outcome. Oncogene 23: 5871–5879.

    Article  CAS  Google Scholar 

  • Hovey RM, Chu L, Balazs M, DeVries S, Moore D, Sauter G et al. (1998). Genetic alterations in primary bladder cancers and their metastases. Cancer Res 58: 3555–3560.

    CAS  PubMed  Google Scholar 

  • Humbert PO, Verona R, Trimarchi JM, Rogers C, Dandapani S, Lees JA . (2000). E2F3 is critical for normal cellular proliferation. Genes Dev 14: 690–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst CD, Fiegler H, Carr P, Williams S, Carter NP, Knowles MA . (2004). High-resolution analysis of genomic copy number alterations in bladder cancer by microarray-based comparative genomic hybridization. Oncogene 23: 2250–2263.

    Article  CAS  Google Scholar 

  • Karan D, Lin MF, Johansson SL, Batra SK . (2003). Current status of the molecular genetics of human prostatic adenocarcinomas. Int J Cancer 103: 285–293.

    Article  CAS  Google Scholar 

  • Knowles MA . (2001). What we could do now: molecular pathology of bladder cancer. Mol Pathol 54: 215–221.

    Article  CAS  Google Scholar 

  • Koo SH, Kwon KC, Ihm CH, Jeon YM, Park JW, Sul CK . (1999). Detection of genetic alterations in bladder tumors by comparative genomic hybridization and cytogenetic analysis. Cancer Genet Cytogenet 110: 87–93.

    Article  CAS  Google Scholar 

  • Lazzerini Denchi E, Attwooll C, Pasini D, Helin K . (2005). Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol Cell Biol 25: 2660–2672.

    Article  Google Scholar 

  • Leone G, DeGregori J, Yan Z, Jakoi L, Ishida S, Williams RS et al. (1998). E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev 12: 2120–2130.

    Article  CAS  Google Scholar 

  • Leone G, Nuckolls F, Ishida S, Adams M, Sears R, Jakoi L et al. (2000). Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by Rb proteins. Mol Cell Biol 20: 3626–3632.

    Article  CAS  Google Scholar 

  • Maddison LA, Sutherland BW, Barrios RJ, Greenberg NM . (2004). Conditional deletion of Rb causes early stage prostate cancer. Cancer Res 64: 6018–6025.

    Article  CAS  Google Scholar 

  • Malumbres M, Barbacid M . (2001). To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1: 222–231.

    Article  CAS  Google Scholar 

  • Nogawa M, Yuasa T, Kimura S, Tanaka M, Kuroda J, Sato K et al. (2005). Intravesical administration of small interfering RNA targeting PLK-1 successfully prevents the growth of bladder cancer. J Clin Invest 115: 978–985.

    Article  CAS  Google Scholar 

  • Oeggerli M, Tomovska S, Schraml P, Calvano-Forte D, Schafroth S, Simon R et al. (2004). E2F3 amplification and overexpression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer. Oncogene 23: 5616–5623.

    Article  CAS  Google Scholar 

  • Paulson QX, McArthur MJ, Johnson DG . (2006). E2F3a stimulates proliferation, p53-independent apoptosis and carcinogenesis in a transgenic mouse model. Cell Cycle 5: 184–190.

    Article  CAS  Google Scholar 

  • Phillips SM, Barton CM, Lee SJ, Morton DG, Wallace DM, Lemoine NR et al. (1994). Loss of the retinoblastoma susceptibility gene (RB1) is a frequent and early event in prostatic tumorigenesis. Br J Cancer 70: 1252–1257.

    Article  CAS  Google Scholar 

  • Prat E, Bernues M, Caballin MR, Egozcue J, Gelabert A, Miro R . (2001). Detection of chromosomal inbalances in papillary bladder tumors by comparative genomic hybridization. Urology 57: 986–992.

    Article  CAS  Google Scholar 

  • Ramaswamy S, Ross KN, Lander ES, Golub TR . (2003). A molecular signature of metastasis in primary solid tumors. Nat Genet 33: 49–54.

    Article  CAS  Google Scholar 

  • Richter J, Wagner U, Schraml P, Maurer R, Alund G, Knonagel H et al. (1999). Chromosomal imbalances are associated with a high risk of progression in early invasive (pT1) urinary bladder cancer. Cancer Res 59: 5687–5691.

    CAS  PubMed  Google Scholar 

  • Saavedra HI, Wu L, de Bruin A, Timmers C, Rosol TJ, Weinstein M et al. (2002). Specificity of E2F1, E2F2, and E2F3 in mediating phenotypes induced by loss of Rb. Cell Growth Differ 13: 215–225.

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW . (2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York.

    Google Scholar 

  • Schwab M . (1998). Amplification of oncogenes in human cancer cells. BioEssays 20: 473–479.

    Article  CAS  Google Scholar 

  • Simon R, Burger H, Semjonow A, Hertle L, Terpe HJ, Bocker W . (2000). Patterns of chromosomal imbalances in muscle invasive bladder cancer. Int J Oncol 17: 1025–1029.

    CAS  PubMed  Google Scholar 

  • Terracciano L, Richter J, Tornillo L, Beffa L, Diener PA, Maurer R et al. (1999). Chromosomal imbalances in small cell carcinomas of the urinary bladder. J Pathol 189: 230–235.

    Article  CAS  Google Scholar 

  • Theodorescu D, Broder SR, Boyd JC, Mills SE, Frierson Jr HF . (1997). p53, bcl-2 and retinoblastoma proteins as long-term prognostic markers in localized carcinoma of the prostate. J Urol 158: 131–137.

    Article  CAS  Google Scholar 

  • Thompson TC, Timme TL, Li L, Goltsov A . (1999). Caveolin-1, a metastasis-related gene that promotes cell survival in prostate cancer. Apoptosis 4: 233–237.

    Article  CAS  Google Scholar 

  • Tomovska S, Richter J, Suess K, Wagner U, Rozenblum E, Gasser TC et al. (2001). Molecular cytogenetic alterations associated with rapid tumor cell proliferation in advanced urinary bladder cancer. Int J Oncol 18: 1239–1244.

    CAS  PubMed  Google Scholar 

  • Veltman JA, Fridlyand J, Pejavar S, Olshen AB, Korkola JE, DeVries S et al. (2003). Array-based comparative genomic hybridization for genome-wide screening of DNA copy number in bladder tumors. Cancer Res 63: 2872–2880.

    CAS  PubMed  Google Scholar 

  • Weichert W, Schmidt M, Gekeler V, Denkert C, Stephan C, Jung K et al. (2004). Polo-like kinase 1 is overexpressed in prostate cancer and linked to higher tumor grades. Prostate 60: 240–245.

    Article  CAS  Google Scholar 

  • Wilkinson M . (1988). A rapid and convenient method for isolation of nuclear, cytoplasmic and total cellular RNA. RNA Nucleic Acids Res 16: 10934.

    Article  CAS  Google Scholar 

  • Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT et al. (2001). The E2F1-3 transcription factors are essential for cellular proliferation. Nature 414: 457–462.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Cancer Research UK. AY Olsson is funded by EU Marie Curie fellowship grant and CS Cooper by the Grand Charity of Freemasons. The technical assistance of Jenny Titley for running the flow cytometry is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Y Olsson.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsson, A., Feber, A., Edwards, S. et al. Role of E2F3 expression in modulating cellular proliferation rate in human bladder and prostate cancer cells. Oncogene 26, 1028–1037 (2007). https://doi.org/10.1038/sj.onc.1209854

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209854

Keywords

Search

Quick links