Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of the Ets-1 transcription factor by sumoylation and ubiquitinylation

Abstract

Sumoylation and ubiquitinylation reversibly regulate the activity of transcription factors through covalent attachment to lysine residues of target proteins. We examined whether the Ets-1 transcription factor is modified by sumoylation and/or ubiquitinylation. Among four potential SUMO motifs in Ets-1, we identified lysines 15 and 227 within the LK15YE and IK227QE motifs, as being the sumoylation acceptor sites. Using transfection of Ets-1 wildtype (WT) or its sumoylation deficient version (Ets-1 K15R/K227R), as well as WT or mutant proteins of the SUMO pathway, we further demonstrated that the E2 SUMO-conjugating enzyme Ubc9 and a E3 SUMO ligase, PIASy, can enhance Ets-1 sumoylation, while a SUMO protease, SENP1, can desumoylate Ets-1. We also found that Ets-1 is modified by K48-linked polyubiquitinylation independently of the sumoylation acceptor sites and is degraded through the 26S proteasome pathway, while sumoylation of Ets-1 does not affect its stability. Finally, sumoylation of Ets-1 leads to reduced transactivation and we demonstrated that previously identified critical lysine residues in Synergistic Control motifs are the sumoylation acceptor sites of Ets-1. These data show that Ets-1 can be modified by sumoylation and/or ubiquitinylation, with sumoylation repressing transcriptional activity of Ets-1 and having no clear antagonistic action on the ubiquitin-proteasome degradation pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bohren KM, Nadkarni V, Song JH, Gabbay KH, Owerbach D . (2004). J Biol Chem 279: 27233–27238.

  • Bories JC, Willerford DM, Grevin D, Davidson L, Camus A, Martin P et al. (1995). Nature 377: 635–638.

  • Chakrabarti SR, Sood R, Nandi S, Nucifora G . (2000). Proc Natl Acad Sci USA 97: 13281–13285.

  • Cheng J, Wang D, Wang Z, Yeh ET . (2004). Mol Cell Biol 24: 6021–6028.

  • Cowley DO, Graves BJ . (2000). Genes Dev 14: 366–376.

  • Crepieux P, Coll J, Stehelin D . (1994). Crit Rev Oncogol 5: 615–638.

  • de Launoit Y, Audette M, Pelczar H, Plaza S, Baert JL . (1998). Oncogene 16: 2065–2073.

  • Degerny C, Monte D, Beaudoin C, Jaffray E, Portois L, Hay RT et al. (2005). J Biol Chem 280: 24330–24338.

  • Desterro JM, Rodriguez MS, Hay RT . (1998). Mol cell 2: 233–239.

  • Desterro JM, Thomson J, Hay RT . (1997). FEBS lett 417: 297–300.

  • Dittmer J . (2003). Mol Cancer 2: 29.

  • Dohmen RJ . (2004). Biochim Biophys Acta 1695: 113–131.

  • Donaldson LW, Petersen JM, Graves BJ, McIntosh LP . (1996). EMBO J 15: 125–134.

  • Fafeur V, Tulasne D, Queva C, Vercamer C, Dimster V, Mattot V et al. (1997). Cell Growth Differ 8: 655–665.

  • Haglund K, Dikic I . (2005). EMBO J 24: 3353–3359.

  • Hahn SL, Wasylyk B, Criqui-Filipe P . (1997). Oncogene 15: 1489–1495.

  • Hay RT . (2005). Mol Cell 18: 1–12.

  • Herrera FJ, Triezenberg SJ . (2004). Curr Biol 14: R622–R624.

  • Hershko A, Ciechanover A . (1998). Annu Rev Biochem 67: 425–479.

  • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S . (2002). Nature 419: 135–141.

  • Iniguez-Lluhi JA, Pearce D . (2000). Mol Cell Biol 20: 6040–6050.

  • Janknecht R, Nordheim A . (1996). Oncogene 12: 1961–1969.

  • Johnson ES, Blobel G . (1997). J Biol Chem 272: 26799–26802.

  • Johnson ES . (2004). Annu Rev Biochem 73: 355–382.

  • Kurihara I, Shibata H, Kobayashi S, Suda N, Ikeda Y, Yokota K et al. (2005). J Biol Chem 280: 6721–6730.

  • Leight ER, Glossip D, Kornfeld K . (2005). Development 132: 1047–1056.

  • Macauley MS, Errington WJ, Scharpf M, Mackereth CD, Blaszczak AG, Graves BJ et al. (2005). J Biol Chem 281: 4164–4172.

  • Matunis MJ, Coutavas E, Blobel G . (1996). J Cell Biol 135: 1457–1470.

  • Muller S, Ledl A, Schmidt D . (2004). Oncogene 23: 1998–2008.

  • Muthusamy N, Barton K, Leiden JM . (1995). Nature 377: 639–642.

  • Oikawa T, Yamada T . (2003). Gene 303: 11–34.

  • Paumelle R, Tulasne D, Kherrouche Z, Plaza S, Leroy C, Reveneau S et al. (2002). Oncogene 21: 2309–2319.

  • Perdomo J, Verger A, Turner J, Crossley M . (2005). Mol Cell Biol 25: 1549–1559.

  • Rabault B, Ghysdael J . (1994). J Biol Chem 269: 28143–28151.

  • Rabault B, Roussel MF, Quang CT, Ghysdael J . (1996). Oncogene 13: 877–881.

  • Reveneau S, Paumelle R, Deheuninck J, Leroy C, De Launoit Y, Fafeur V . (2003). Ann NY Acad Sci 1010: 100–103.

  • Rodriguez MS, Dargemont C, Hay RT . (2001). J Biol Chem 276: 12654–12659.

  • Saitoh H, Hinchey J . (2000). J Biol Chem 275: 6252–6258.

  • Sampson DA, Wang M, Matunis MJ . (2001). J Biol Chem 276: 21664–21669.

  • Schmidt D, Muller S . (2003). Cell Mol Life Sci 60: 2561–2574.

  • Seeler JS, Dejean A . (2003). Mol Cell Biol 4: 690–699.

  • Slupsky CM, Gentile LN, Donaldson LW, Mackereth CD, Seidel JJ, Graves BJ et al. (1998). Proc Natl Acad Sci USA 95: 12129–12134.

  • Takahashi A, Higashino F, Aoyagi M, Yoshida K, Itoh M, Kobayashi M et al. (2005). Biochem Biophys Res Commun 327: 575–580.

  • Tulasne D, Deheuninck J, Lourenco FC, Lamballe F, Ji Z, Leroy C et al. (2004). Mol Cell Biol 24: 10328–10339.

  • Tulasne D, Paumelle R, Weidner KM, Vandenbunder B, Fafeur V . (1999). Mol Biol Cell 10: 551–565.

  • van den Akker E, Ano S, Shih HM, Wang LC, Pironin M, Palvimo JJ et al. (2005). J Biol Chem 280: 38035–38046.

  • Wasylyk C, Bradford AP, Gutierrez-Hartmann A, Wasylyk B . (1997). Oncogene 14: 899–913.

  • Wasylyk C, Criqui-Filipe P, Wasylyk B . (2005). Oncogene 24: 820–828.

  • Wernert N, Gilles F, Fafeur V, Bouali F, Raes MB, Pyke C et al. (1994). Cancer Res 54: 5683–5688.

  • Wernert N, Raes MB, Lassalle P, Dehouck MP, Gosselin B, Vandenbunder B et al. (1992). Am J Pathol 140: 119–127.

  • Xiao GH, Jeffers M, Bellacosa A, Mitsuuchi Y, Vande Woude GF, Testa JR . (2001). Proc Natl Acad Sci USA 98: 247–252.

  • Yang SH, Jaffray E, Hay RT, Sharrocks AD . (2003). Mol cell 12: 63–74.

  • Yang SH, Sharrocks AD . (2005). EMBO J 24: 2161–2171.

Download references

Acknowledgements

This work was supported by CNRS, Institut Pasteur de Lille, University of Lille 1, University of Lille 2, and INSERM, and by grants from the Fondation de France, the FEDER-Région Nord Pas de Calais and the Ligue Contre le Cancer-Comité Nord. ZJ was supported by a Fondation de France fellowship, NV by a Ligue Nationale Contre le Cancer fellowship, BF by a Institut Pasteur/Région Nord- Pas de Calais fellowship and JD by Association pour la Recherche sur le Cancer fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Fafeur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, Z., Degerny, C., Vintonenko, N. et al. Regulation of the Ets-1 transcription factor by sumoylation and ubiquitinylation. Oncogene 26, 395–406 (2007). https://doi.org/10.1038/sj.onc.1209789

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209789

Keywords

This article is cited by

Search

Quick links