Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Direct cancer tissue proteomics: a method to identify candidate cancer biomarkers from formalin-fixed paraffin-embedded archival tissues

Abstract

Successful treatment of multiple cancer types requires early detection and identification of reliable biomarkers present in specific cancer tissues. To test the feasibility of identifying proteins from archival cancer tissues, we have developed a methodology, termed direct tissue proteomics (DTP), which can be used to identify proteins directly from formalin-fixed paraffin-embedded prostate cancer tissue samples. Using minute prostate biopsy sections, we demonstrate the identification of 428 prostate-expressed proteins using the shotgun method. Because the DTP method is not quantitative, we employed the absolute quantification method and demonstrate picogram level quantification of prostate-specific antigen. In depth bioinformatics analysis of these expressed proteins affords the categorization of metabolic pathways that may be important for distinct stages of prostate carcinogenesis. Furthermore, we validate Wnt-3 as an upregulated protein in cancerous prostate cells by immunohistochemistry. We propose that this general strategy provides a roadmap for successful identification of critical molecular targets of multiple cancer types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

DTP:

direct tissue proteomic

fmol:

femptomole

pg:

picogram

LC–MS/MS:

liquid chromatography–tandem mass spectrometry

TCA cycle:

tricarboxylic acid cycle

MALDI–TOF-MS:

matrix-assisted laser desorption ionization-time-of-flight mass spectrometry

SELDI–TOF:

surface-enhanced laser desorption ionization mass spectrometry

References

  • Cantin GT, Yates III JR . (2004). J Chromatogr A 1053: 7–14.

  • Coombs GS, Bergstrom RC, Pellequer JL, Baker SI, Navre M, Smith MM et al. (1998). Chem Biol 5: 475–488.

  • Cox C, Bignell G, Greenman C, Stabenau A, Warren W, Stephens P et al. (2005). Proc Natl Acad Sci USA 102: 4542–4547.

  • Cronauer MV, Schulz WA, Ackermann R, Burchardt M . (2005). Int J Oncol 26: 1033–1040.

  • DePinho RA, Polyak K . (2004). Nat Genet 36: 932–934.

  • Eng JK, McCormack AL, Yates III JR . (1994). J Am Soc Mass Spectrom 5: 976–989.

  • Ford TF, Butcher DN, Masters JR, Parkinson MC . (1985). Br J Urol 57: 50–55.

  • George DJ . (2002). Urology 60: 115–121; discussion 122.

  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP . (2003). Proc Natl Acad Sci USA 100: 6940–6945.

  • Gleason DF . (1988). NCI Monogr 7: 15–18.

  • Gleason DF . (1992). Hum Pathol 23: 273–279.

  • Griffin TJ, Lock CM, Li XJ, Patel A, Chervetsova I, Lee H et al. (2003). Anal Chem 75: 867–874.

  • Gupta A, Roehrborn C, Aragaki C . (2004). J Urol 171: 2384–2385 (author reply 2385).

  • Gygi SP, Rochon Y, Franza BR, Aebersold R . (1999). Mol Cell Biol 19: 1720–1730.

  • Han DK, Eng J, Zhou H, Aebersold R . (2001). Nat Biotechnol 19: 946–951.

  • Hood BL, Darfler MM, Guiel TG, Furusato B, Lucas DA, Ringeisen BR et al. (2005). Mol Cell Proteomics 4: 1741–1753.

  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R . (2002). Anal Chem 74: 5383–5392.

  • Lundgren DH, Eng J, Wright ME, Han DK . (2003). Mol Cell Proteomics 2: 1164–1176.

  • Mayya V, Rezaul K, Cong YS, Han D . (2005). Mol Cell Proteomics 4: 214–223.

  • Meyerson M, Carbone D . (2005). J Clin Oncol 23: 3219–3226.

  • Nantermet PV, Xu J, Yu Y, Hodor P, Holder D, Adamski S et al. (2004). J Biol Chem 279: 1310–1322.

  • Nelson PS, Han D, Rochon Y, Corthals GL, Lin B, Monson A et al. (2000). Electrophoresis 21: 1823–1831.

  • Nesvizhskii AI, Keller A, Kolker E, Aebersold R . (2003). Anal Chem 75: 4646–4658.

  • Parnes HL, Thompson IM, Ford LG . (2005). J Clin Oncol 23: 368–377.

  • Patterson SD . (2004). Arthritis Rheum 50: 3741–3744.

  • Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP . (2003). J Proteome Res 2: 43–50.

  • Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA . (2002). Nat Rev Drug Discov 1: 683–695.

  • Posadas EM, Simpkins F, Liotta LA, MacDonald C, Kohn EC . (2005). Ann Oncol 16: 16–22.

  • Raben D, Helfrich B . (2004). Clin Lung Cancer 6: 48–57.

  • Rezaul K, Wu L, Mayya V, Hwang SI, Han D . (2005). Mol Cell Proteomics 4: 169–181.

  • Sawyers CL . (2002). Curr Opin Genet Dev 12: 111–115.

  • Sharpless NE, DePinho RA . (2005). Nature 436: 636–637.

  • Smith RA, Cokkinides V, Eyre HJ . (2005). CA Cancer J Clin 55: 31–44; quiz 55–56.

  • Stephens P, Edkins S, Davies H, Greenman C, Cox C, Hunter C et al. (2005). Nat Genet 37: 590–592.

  • Sweat GT . (2005). Postgrad Med 117: 45–50.

  • Tanneberger S . (1977). Arch Geschwulstforsch 47: 755–765.

  • Tarro G, Perna A, Esposito C . (2005). J Cell Physiol 203: 1–5.

  • Tonon G, Wong KK, Maulik G, Brennan C, Feng B, Zhang Y et al. (2005). Proc Natl Acad Sci USA 102: 9625–9630.

  • Velasco AM, Gillis KA, Li Y, Brown EL, Sadler TM, Achilleos M et al. (2004). Endocrinology 145: 3913–3924.

  • Verras M, Brown J, Li X, Nusse R, Sun Z . (2004). Cancer Res 64: 8860–8866.

  • Wardwell NR, Massion PP . (2005). Semin Oncol 32: 259–268.

  • Wilson JF . (2004). Ann Intern Med 140: 317–319.

  • Wolters DA, Washburn MP, Yates III JR . (2001). Anal Chem 73: 5683–5690.

  • Wright ME, Eng J, Sherman J, Hockenbery DM, Nelson PS, Galitski T et al. (2003). Genome Biol 5: R4.

  • Wright ME, Han DK, Aebersold R . (2005). Mol Cell Proteomics 4: 545–554.

  • Zangar RC, Varnum SM, Covington CY, Smith RD . (2004). Dis Markers 20: 135–148.

  • Zhu H, Mazor M, Kawano Y, Walker MM, Leung HY, Armstrong K et al. (2004). Cancer Res 64: 7918–7926.

Download references

Acknowledgements

We thank Michael Fong for his expert assistance in graphics and tables, and members of Han Lab for helpful discussion. This work was supported by R01 HL 67569, P01 HL70694, RR019436, funds from Neag Comprehensive Cancer Center and UConn Cancer Golf Proceeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D K Han.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, SI., Thumar, J., Lundgren, D. et al. Direct cancer tissue proteomics: a method to identify candidate cancer biomarkers from formalin-fixed paraffin-embedded archival tissues. Oncogene 26, 65–76 (2007). https://doi.org/10.1038/sj.onc.1209755

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209755

Keywords

This article is cited by

Search

Quick links