Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ras transformation requires metabolic control by 6-phosphofructo-2-kinase

Abstract

Neoplastic cells transport large amounts of glucose in order to produce anabolic precursors and energy within the inhospitable environment of a tumor. The ras signaling pathway is activated in several cancers and has been found to stimulate glycolytic flux to lactate. Glycolysis is regulated by ras via the activity of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFK2/FBPase), which modulate the intracellular concentration of the allosteric glycolytic activator, fructose-2,6-bisphosphate (F2,6BP). We report herein that sequential immortalization and ras-transformation of mouse fibroblasts or human bronchial epithelial cells paradoxically decreases the intracellular concentration of F2,6BP. This marked reduction in the intracellular concentration of F2,6BP sensitizes transformed cells to the antimetabolic effects of PFK2/FBPase inhibition. Moreover, despite co-expression of all four mRNA species (PFKFB1-4), heterozygotic genomic deletion of the inducible PFKFB3 gene in ras-transformed mouse lung fibroblasts suppresses F2,6BP production, glycolytic flux to lactate, and growth as soft agar colonies or tumors in athymic mice. These data indicate that the PFKFB3 protein product may serve as an essential downstream metabolic mediator of oncogenic ras, and we propose that pharmacologic inhibition of this enzyme should selectively suppress the high rate of glycolysis and growth by cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z et al. (2002). Cancer Res 62: 5881–5887.

  • Blum R, Jacob-Hirsch J, Amariglio N, Rechavi G, Kloog Y . (2005). Cancer Res 65: 999–1006.

  • Boren J, Cascante M, Marin S, Comin-Anduix B, Centelles JJ, Lim S et al. (2001). J Biol Chem 276: 37747–37753.

  • Boros LG, Bassilian S, Lim S, Lee WN . (2001). Pancreas 22: 1–7.

  • Boros LG, Torday JS, Lim S, Bassilian S, Cascante M, Lee WN . (2000). Cancer Res 60: 1183–1185.

  • Chesney J, Bucala R . (2001). Biotechnol Int 3: 213–220.

  • Chesney J, Mitchell R, Benigni F, Bacher M, Spiegel L, Al-Abed Y et al. (1999). Proc Natl Acad Sci USA 96: 3047–3052.

  • Chesney J, Telang S, Yalcin A, Clem A, Wallis N, Bucala R . (2005). Biochem Biophys Res Commun 331: 139–146.

  • Hamilton JA, Callaghan MJ, Sutherland RL, Watts CK . (1997). Mol Endocrinol 11: 490–502.

  • Hue L, Rousseau GG . (1993). Adv Enzyme Regul 33: 97–110.

  • Kessler R, Eschrich K . (2001). Brain Res Mol Brain Res 87: 190–195.

  • Kole HK, Resnick RJ, Van Doren M, Racker E . (1991). Arch Biochem Biophys 286: 586–590.

  • Mahlknecht U, Chesney J, Hoelzer D, Bucala R . (2003). Int J Oncol 23: 883–891.

  • Manzano A, Rosa JL, Ventura F, Perez JX, Nadal M, Estivill X et al. (1998). Cytogenet Cell Genet 83: 214–217.

  • Mazurek S, Zwerschke W, Jansen-Durr P, Eigenbrodt E . (2001). Oncogene 20: 6891–6898.

  • Minchenko A, Leshchinsky I, Opentanova I, Sang N, Srinivas V, Armstead V et al. (2002). J Biol Chem 277: 6183–6187.

  • Minchenko O, Opentanova I, Caro J . (2003). FEBS Lett 554: 264–270.

  • Minchenko O, Opentanova I, Minchenko D, Ogura T, Esumi H . (2004). FEBS Lett 576: 14–20.

  • Mueller-Klieser W, Freyer JP, Sutherland RM . (1986). Br J Cancer 53: 345–353.

  • Navarro-Sabate A, Manzano A, Riera L, Rosa JL, Ventura F, Bartrons R . (2001). Gene 264: 131–138.

  • Okar DA, Lange AJ . (1999). Biofactors 10: 1–14.

  • Racker E, Resnick RJ, Feldman R . (1985). Proc Natl Acad Sci USA 82: 3535–3538.

  • Ramanathan A, Wang C, Schreiber SL . (2005). Proc Natl Acad Sci USA 102: 5992–5997.

  • Sakai A, Kato M, Fukasawa M, Ishiguro M, Furuya E, Sakakibara R . (1996). J Biochem (Tokyo) 119: 506–511.

  • Sakakibara R, Kato M, Okamura N, Nakagawa T, Komada Y, Tominaga N et al. (1997). J Biochem (Tokyo) 122: 122–128.

  • Sakakibara R, Okudaira T, Fujiwara K, Kato M, Hirata T, Yamanaka S et al. (1999). Biochem Biophys Res Commun 257: 177–181.

  • Soejima K, Fang W, Rollins BJ . (2003). Oncogene 22: 4723–4733.

  • Taetle R, Rosen F, Abramson I, Venditti J, Howell S . (1987). Cancer Treat Rep 71: 297–304.

  • Valenzuela DM, Groffen J . (1986). Nucleic Acids Res 14: 843–852.

  • Van Den Berghe N, Ouwens DM, Maassen JA, Van Mackelenbergh MG, Sips HC, Krans HM . (1994). Mol Cell Biol 14: 2372–2377.

  • Van Schaftingen E, Jett MF, Hue L, Hers HG . (1981). Proc Natl Acad Sci USA 78: 3483–3486.

  • Van Schaftingen E, Lederer B, Bartrons R, Hers HG . (1982). Eur J Biochem 129: 191–195.

  • Vizan P, Boros LG, Figueras A, Capella G, Mangues R, Bassilian S et al. (2005). Cancer Res 65: 5512–5515.

  • Walenta S, Schroeder T, Mueller-Klieser W . (2004). Curr Med Chem 11: 2195–2204.

  • Wang T, Marquardt C, Foker J . (1976). Nature 261: 702–705.

  • Warburg O, Negelein E . (1924). Biochemische Zeitschrift 152: 319–344.

  • Wechalekar K, Sharma B, Cook G . (2005). Clin Radiol 60: 1143–1155.

  • Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D et al. (1999). Cancer Res 59: 5830–5835.

Download references

Acknowledgements

We thank Robert Mitchell for providing the rasV12 and LT retroviruses and Barrett Rollins for providing the hT, hT/Lt and hT/LT/ras bronchial epithelial cells. We gratefully acknowledge helpful discussions with Douglas Dean and Otto Grubraw. This work was supported by the following grants: NIH 1P20 RR18733 (JC), NIH 1 R01 CA11642801 (JC), and the P Morris External Research Program (JC and JWE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Chesney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Telang, S., Yalcin, A., Clem, A. et al. Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene 25, 7225–7234 (2006). https://doi.org/10.1038/sj.onc.1209709

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209709

Keywords

This article is cited by

Search

Quick links