Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Intrinsic FAK activity and Y925 phosphorylation facilitate an angiogenic switch in tumors

Abstract

Elevated focal adhesion kinase (FAK) expression occurs in advanced cancers, yet a signaling role for FAK in tumor progression remains undefined. Here, we suppressed FAK activity in 4T1 breast carcinoma cells resulting in reduced FAK Y925 phosphorylation, Grb2 adaptor protein binding to FAK, and signaling to mitogen-activated protein (MAP) kinase (MAPK). Loss of a FAK-Grb2-MAPK linkage did not affect 4T1 cell proliferation or survival in culture, yet FAK inhibition reduced vascular endothelial growth factor (VEGF) expression and resulted in small avascular tumors in mice. This FAK-Grb2-MAPK linkage was essential in promoting angiogenesis as reconstitution experiments using Src-transformed FAK-null fibroblasts revealed that point mutations affecting FAK catalytic activity (R454) or Y925 phosphorylation (F925) disrupted the ability of FAK to promote MAPK- and VEGF-associated tumor growth. Notably, in both FAK-inhibited 4T1 and Src-transformed FAK-null cells, constitutively activated (CA) mitogen-activated protein kinase kinase 1 (MEK1) restored VEGF production and CA-MEK1 or added VEGF rescued tumor growth and angiogenesis. These studies provide the first biological support for Y925 FAK phosphorylation and define a novel role for FAK activity in promoting a MAPK-associated angiogenic switch during tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

−/−:

null

Ad:

adenovirus

CA:

constitutively activated

CAM:

chorioallantoic membrane

Ctrl:

control

DAB:

diaminobenzidine

ERK:

extracellular signal-regulated kinase

FAK:

focal adhesion kinase

FRNK:

FAK-related non-kinase

HUVEC:

human umbilical vein endothelial cell

IVK:

in vitro kinase

MEK1:

mitogen-activated protein kinase kinase 1

PTK:

protein-tyrosine kinase

pY:

phosphotyrosine

SH2:

Src homology domain 2

v-Src:

viral Src

References

  • Aguirre Ghiso JA . (2002). Oncogene 21: 2513–2524.

  • Barberis L, Wary KK, Fiucci G, Liu F, Hirsch E, Brancaccio M et al. (2000). J Biol Chem 275: 36532–36540.

  • Barr MP, Byrne AM, Duffy AM, Condron CM, Devocelle M, Harriott P et al. (2005). Br J Cancer 92: 328–333.

  • Benlimame N, He Q, Jie S, Xiao D, Xu YJ, Loignon M et al. (2005). J Cell Biol 171: 505–516.

  • Boudreau N, Myers C . (2003). Breast Cancer Res 5: 140–146.

  • Cance WG, Harris JE, Iacocca MV, Roche E, Yang X, Chang J et al. (2000). Clin Cancer Res 6: 2417–2423.

  • De S, Razorenova O, McCabe NP, O'Toole T, Qin J, Byzova TV . (2005). Proc Natl Acad Sci USA 102: 7589–7594.

  • Ding Q, Grammer JR, Nelson MA, Guan JL, Stewart Jr JE, Gladson CL . (2005). J Biol Chem 280: 6802–6815.

  • Eliceiri BP, Puente XS, Hood JD, Stupack DG, Schlaepfer DD, Huang XZ et al. (2002). J Cell Biol 157: 149–160.

  • Ferrara N, Gerber HP, LeCouter J . (2003). Nat Med 9: 669–676.

  • Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA . (1995). Science 270: 1500–1502.

  • Gabarra-Niecko V, Schaller MD, Dunty JM . (2003). Cancer Metastasis Rev 22: 359–374.

  • Golubovskaya V, Beviglia L, Xu LH, Earp III HS, Craven R, Cance W . (2002). J Biol Chem 277: 38978–38987.

  • Guo W, Giancotti FG . (2004). Nat Rev Mol Cell Biol 5: 816–826.

  • Hanahan D, Weinberg RA . (2000). Cell 100: 57–70.

  • Hanks SK, Ryzhova L, Shin NY, Brabek J . (2003). Front Biosci 8: 982–996.

  • Haskell H, Natarajan M, Hecker TP, Ding Q, Stewart Jr J, Grammer JR et al. (2003). Clin Cancer Res 9: 2157–2165.

  • Hauck CR, Hsia DA, Puente XS, Cheresh DA, Schlaepfer DD . (2002). EMBO J 21: 6289–6302.

  • Hecker TP, Gladson CL . (2003). Front Biosci 8: 705–714.

  • Heppner GH, Miller FR, Shekhar PM . (2000). Breast Cancer Res 2: 331–334.

  • Hood JD, Frausto R, Kiosses WB, Schwartz MA, Cheresh DA . (2003). J Cell Biol 162: 933–943.

  • Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D et al. (2003). J Cell Biol 160: 753–767.

  • Ilic D, Almeida EA, Schlaepfer DD, Dazin P, Aizawa S, Damsky CH . (1998). J Cell Biol 143: 547–560.

  • Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N et al. (1995). Nature 377: 539–544.

  • Ilic D, Kovacic B, McDonagh S, Jin F, Baumbusch C, Gardner DG et al. (2003). Circ Res 92: 300–307.

  • Jiang BH, Agani F, Passaniti A, Semenza GL . (1997). Cancer Res 57: 5328–5335.

  • Kornberg LJ, Shaw LC, Spoerri PE, Caballero S, Grant MB . (2004). Invest Ophthalmol Vis Sci 45: 4463–4469.

  • Kranenburg O, Gebbink MF, Voest EE . (2004). Biochim Biophys Acta 1654: 23–37.

  • Lark AL, Livasy CA, Dressler L, Moore DT, Millikan RC, Geradts J et al. (2005). Mod Pathol PMID: 15861214.

  • Li N, Zhang Y, Naylor MJ, Schatzmann F, Maurer F, Wintermantel T et al. (2005). EMBO J 24: 1942–1953.

  • Lightfoot HM, Lark A, Livasy CA, Moore DT, Cowan D, Dressler L et al. (2004). Breast Cancer Res Treat 88: 109–116.

  • McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC . (2005). Nat Rev Cancer 5: 505–515.

  • McLean GW, Komiyama NH, Serrels B, Asano H, Reynolds L, Conti F et al. (2004). Genes Dev 18: 2998–3003.

  • Mitra SK, Hanson DA, Schlaepfer DD . (2005). Nat Rev Mol Cell Biol 6: 56–68.

  • Mitra SK, Lim S-T, Chi A, Schlaepfer DD . (2006). Oncogene, doi:10.1038/sj.onc.1209482.

  • Moissoglu K, Gelman IH . (2003). J Biol Chem 278: 47946–47959.

  • Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. (1996). Science 272: 263–267.

  • Pages G, Pouyssegur J . (2005). Cardiovasc Res 65: 564–573.

  • Parsons JT . (2003). J Cell Sci 116: 1409–1416.

  • Peng X, Ueda H, Zhou H, Stokol T, Shen TL, Alcaraz A et al. (2004). Cardiovasc Res 64: 421–430.

  • Schlaepfer DD, Hunter T . (1997). J Biol Chem 272: 13189–13195.

  • Schlaepfer DD, Mitra SK . (2004). Curr Opin Genet Dev 14: 92–101.

  • Schlaepfer DD, Hanks SK, Hunter T, van der Geer P . (1994). Nature 372: 786–791.

  • Schlaepfer DD, Jones KC, Hunter T . (1998). Mol Cell Biol 18: 2571–2585.

  • Schlaepfer DD, Mitra SK, Ilic D . (2004). Biochim Biophys Acta 1692: 77–102.

  • Seko Y, Takahashi N, Sabe H, Tobe K, Kadowaki T, Nagai R . (1999). Biochem Biophys Res Commun 262: 290–296.

  • Shen T-L, Park AYJ, Alcaraz A, Peng X, Jang I, Koni P et al. (2005). J Cell Biol 169: 941–952.

  • Sieg DJ, Hauck CR, Schlaepfer DD . (1999). J Cell Sci 112: 2677–2691.

  • Slack JK, Adams RB, Rovin JD, Bissonette EA, Stoker CE, Parsons JT . (2001). Oncogene 20: 1152–1163.

  • Slack-Davis JK, Eblen ST, Zecevic M, Boerner SA, Tarcsafalvi A, Diaz HB et al. (2003). J Cell Biol 162: 281–291.

  • Storgard C, Mikolon D, Stupack DG . (2004). Methods Mol Biol 294: 123–136.

  • Tan C, Cruet-Hennequart S, Troussard A, Fazli L, Costello P, Sutton K et al. (2004). Cancer Cell 5: 79–90.

  • Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA et al. (2000). Nat Med 6: 529–535.

  • Tschan MP, Fischer KM, Fung VS, Pirnia F, Borner MM, Fey MF et al. (2003). J Biol Chem 278: 42750–42760.

  • van Nimwegen MJ, Verkoeijen S, van Buren L, Burg D, van de Water B . (2005). Cancer Res 65: 4698–4706.

  • Wang D, Grammer JR, Cobbs CS, Stewart JE, Liu Z, Rhoden R et al. (2000). J Cell Sci 113: 4221–4230.

  • Weaver VM, Peterson OW, Wang F, Larabell CA, Briand P, Damsky C et al. (1997). J Cell Biol 137: 231–245.

  • White DE, Kurpios NA, Zuo D, Hassell JA, Blaess S, Mueller U et al. (2004). Cancer Cell 6: 159–170.

  • Xu LH, Yang X, Bradham CA, Brenner DA, Baldwin Jr AS, Craven RJ et al. (2000). J Biol Chem 275: 30597–30604.

Download references

Acknowledgements

We thank Bruce Torbett (Scripps) for the pVIPER lentiviral vector, Luigi Naldini (San Raffaele Telethon Institute for Gene Therapy, Milan, Italy) for the CMVDR8.74 and VSVG lentiviral packaging vectors, Charlie Surh (Scripps) for Leica cryostat usage, Christof Hauck (University of Wuerzburg, Germany) for performing the initial soft agar growth assays, Jun-Lin Guan (Cornell) for sharing results prior to publication, and we greatly appreciate the administrative assistance provided by Theresa Villalpando. S Mitra is supported by a fellowship (12FT-0122) from the California Tobacco-Related Disease Research Program and D Hanson by an NIH Training grant (T32 AI07606). This work was supported by grants from the NIH to Dusko Ilic (CA087652), Dwayne Stupack (CA107263), David Cheresh (CA50286, CA45726, CA95262, EY14174, CA78045, HL57900) and to David Schlaepfer (CA75240, CA87038, CA102310). David Schlaepfer is an Established Investigator of the American Heart Association. This is manuscript number 17598-IMM from The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D D Schlaepfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, S., Mikolon, D., Molina, J. et al. Intrinsic FAK activity and Y925 phosphorylation facilitate an angiogenic switch in tumors. Oncogene 25, 5969–5984 (2006). https://doi.org/10.1038/sj.onc.1209588

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209588

Keywords

This article is cited by

Search

Quick links