Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stromelysin-1 expression is activated in vivo by Ets-1 through palindromic head-to-head Ets binding sites present in the promoter

Abstract

Regulation of the gene expression of Stromelysin-1 (matrix metalloproteinase-3), a member of the matrix metalloproteinase family, is critical for tissue homeostasis. The Stromelysin-1 promoter is known to be transactivated by Ets proteins through palindromic head-to-head Ets binding sites (EBS), an unusual configuration among metalloproteinase promoters. Patterns of increased co-expression of Stromelysin-1 and Ets-1 genes have been observed in pathological processes such as rheumatoid arthritis, glomerulonephritis and tumor invasion. In this context, we show in a synovial fibroblastic model cell line (HIG-82), which is able to co-express Stromelysin-1 and Ets-1, that the EBS palindrome is essential for the expression of Stromelysin-1. More precisely, using electrophoretic mobility shift assays, DNA affinity purification and chromatin immunoprecipitation, we demonstrate that endogenous Ets-1, but not Ets-2, is present on this palindrome. The use of a dominant-negative form of Ets-1 and the decrease of Ets-1 amount either by fumagillin, an antiangiogenic compound, or by short interfering RNA show that the activation rate of the promoter and the expression of Stromelysin-1 correlate with the level of endogenous Ets-1. Thus, it is the first demonstration, using this cellular model, that endogenously expressed Ets-1 is actually a main activator of the Stromelysin-1 promoter through its effective binding to the EBS palindrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Andrews NC, Faller DV . (1991). Nucleic Acids Res 19: 2499.

  • Baillat D, Begue A, Stehelin D, Aumercier M . (2002). J Biol Chem 277: 29386–29398.

  • Barrett JM, Puglia MA, Singh G, Tozer RG . (2002). Breast Cancer Res Treat 72: 227–232.

  • Basuyaux JP, Ferreira E, Stehelin D, Buttice G . (1997). J Biol Chem 272: 26188–26195.

  • Bernier SG, Lazarus DD, Clark E, Doyle B, Labenski MT, Thompson CD et al. (2004). Proc Natl Acad Sci USA 101: 10768–10773.

  • Boyd KE, Wells J, Gutman J, Bartley SM, Farnham PJ . (1998). Proc Natl Acad Sci USA 95: 13887–13892.

  • Buttice G, Kurkinen M . (1993). J Biol Chem 268: 7196–7204.

  • Calmels TP, Mattot V, Wernert N, Vandenbunder B, Stehelin D . (1995). Biol Cell 84: 53–61.

  • Catalano A, Romano M, Robuffo I, Strizzi L, Procopio A . (2001). Am J Pathol 159: 721–731.

  • Chen JH . (1990). Oncogene Res 5: 277–285.

  • Chen YF, Shin SJ, Lin SR . (2005). DNA Cell Biol 24: 126–132.

  • Constantin A, Lauwers-Cances V, Navaux F, Abbal M, van Meerwijk J, Mazieres B et al. (2002). Arthritis Rheum 46: 1754–1762.

  • Crawford HC, Matrisian LM . (1996). Enzyme Protein 49: 20–37.

  • Datta B, Majumdar A, Datta R, Balusu R . (2004). Biochemistry 43: 14821–14831.

  • Dittmer J, Nordheim A . (1998). Biochim Biophys Acta 1377: F1–11.

  • Frisch SM, Clark EJ, Werb Z . (1987). Proc Natl Acad Sci USA 84: 2600–2604.

  • Frohman MA, Dush MK, Martin GR . (1988). Proc Natl Acad Sci USA 85: 8998–9002.

  • Gaire M, Barro CD, Kerr LD, Carlisle F, Matrisian LM . (1996). Mol Carcinogen 15: 124–133.

  • Galang CK, Der CJ, Hauser CA . (1994). Oncogene 9: 2913–2921.

  • Georgescu HI, Mendelow D, Evans CH . (1988). In Vitro Cell Dev Biol 24: 1015–1022.

  • Ghilardi G, Biondi ML, Caputo M, Leviti S, DeMonti M et al. (2002). Clin Cancer Res 8: 3820–3823.

  • Graves BJ, Petersen JM . (1998). Adv Cancer Res 75: 1–55.

  • Higashino F, Yoshida K, Noumi T, Seiki M, Fujinaga K . (1995). Oncogene 10: 1461–1463.

  • Hodge DR, Robinson L, Watson D, Lautenberger J, Zhang XK, Venanzoni M et al. (1996). Oncogene 12: 11–18.

  • Ingber D, Fujita T, Kishimoto S, Sudo K, Kanamaru T, Brem H et al. (1990). Nature 348: 555–557.

  • Iwasaka C, Tanaka K, Abe M, Sato Y . (1996). J Cell Physiol 169: 522–531.

  • Kirstein M, Sanz L, Quinones S, Moscat J, Diaz-Meco MT, Saus J . (1996). J Biol Chem 271: 18231–18236.

  • Kria L, Ohira A, Amemiya T . (1998). Curr Eye Res 17: 986–993.

  • Laemmli UK . (1970). Nature 227: 680–685.

  • Lin CW, Robbins PD, Georgescu HI, Evans CH . (1996). Exp Cell Res 223: 117–126.

  • Lowther WT, Matthews BW . (2000). Biochim Biophys Acta 1477: 157–167.

  • Majerus MA, Bibollet-Ruche F, Telliez JB, Wasylyk B, Bailleul B . (1992). Nucleic Acids Res 20: 2699–2703.

  • Malemud CJ, Goldberg VM . (1999). Front Biosci 4: D762–D771.

  • Man AK, Young LJ, Tynan JA, Lesperance J, Egeblad M, Werb Z et al. (2003). Mol Cell Biol 23: 8614–8625.

  • Maroulakou IG, Bowe DB . (2000). Oncogene 19: 6432–6442.

  • Mauviel A . (1993). J Cell Biochem 53: 288–295.

  • Mukherjee T, Kumar A, Mathur M, Chattopadhyay TK, Ralhan R . (2003). J Cancer Res Clin Oncol 129: 430–436.

  • Naito T, Razzaque MS, Nazneen A, Liu D, Nihei H, Koji T et al. (2000). J Am Soc Nephrol 11: 2243–2255.

  • Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM . (2000). J Clin Oncol 18: 1135–1149.

  • Oikawa T, Yamada T . (2003). Gene 303: 11–34.

  • Ozaki I, Mizuta T, Zhao G, Zhang H, Yoshimura T, Kawazoe S et al. (2003). Hepatol Res 27: 289–301.

  • Paumelle R, Tulasne D, Kherrouche Z, Plaza S, Leroy C, Reveneau S et al. (2002). Oncogene 21: 2309–2319.

  • Pufall MA, Graves BJ . (2002). Annu Rev Cell Dev Biol 18: 421–462.

  • Pufall MA, Lee GM, Nelson ML, Kang HS, Velyvis A, Kay LE et al. (2005). Science 309: 142–145.

  • Quinones S, Buttice G, Kurkinen M . (1994). Biochem J 302 (Part 2): 471–477.

  • Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE et al. (2005). Nature 436: 123–127.

  • Redlich K, Kiener HP, Schett G, Tohidast-Akrad M, Selzer E, Radda I et al. (2001). Arthritis Rheum 44: 266–274.

  • Rekdal C, Sjottem E, Johansen T . (2000). J Biol Chem 275: 40288–40300.

  • Rodriguez-Nieto S, Medina MA, Quesada AR . (2001). Anticancer Res 21: 3457–3460.

  • Rothhammer T, Hahne JC, Florin A, Poser I, Soncin F, Wernert N et al. (2004). Cell Mol Life Sci 61: 118–128.

  • Sato Y, Abe M, Tanaka K, Iwasaka C, Oda N, Kanno S et al. (2000). Adv Exp Med Biol 476: 109–115.

  • Sin N, Meng L, Wang MQ, Wen JJ, Bornmann WG, Crews CM . (1997). Proc Natl Acad Sci USA 94: 6099–6103.

  • Singh S, Barrett J, Sakata K, Tozer RG, Singh G . (2002). Curr Drug Targets 3: 359–367.

  • Span PN, Manders P, Heuvel JJ, Thomas CM, Bosch RR, Beex LV et al. (2002). Oncogene 21: 8506–8509.

  • Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW et al. (1999). Cell 98: 137–146.

  • Sternlicht MD, Werb Z . (1999) In: T Kreis and R Vale (eds). Guidebook to the Extracellular Matix and Adhesion Proteins. Oxford University Press: New York, pp 505–563.

    Google Scholar 

  • Sun HB, Yokota H . (2001). Bone 28: 303–309.

  • Terashima M, Akita H, Kanazawa K, Inoue N, Yamada S, Ito K et al. (1999). Circulation 99: 2717–2719.

  • Tokuhara K, Ogata Y, Nakagawa M, Shirouzu K . (2003). Int Surg 88: 25–33.

  • Trojanowska M . (2000). Oncogene 19: 6464–6471.

  • Vetter M, Blumenthal SG, Lindemann RK, Manns J, Wesselborg S, Thomssen C et al. (2005). Oncogene 24: 650–661.

  • Vu TH, Werb Z . (2000). Genes Dev 14: 2123–2133.

  • Wakiya K, Begue A, Stehelin D, Shibuya M . (1996). J Biol Chem 271: 30823–30828.

  • Wang J, Lou P, Henkin J . (2000). J Cell Biochem 77: 465–473.

  • Wasylyk C, Gutman A, Nicholson R, Wasylyk B . (1991). EMBO J 10: 1127–1134.

  • Wernert N, Gilles F, Fafeur V, Bouali F, Raes MB, Pyke C et al. (1994). Cancer Res 54: 5683–5688.

  • Wernert N, Stanjek A, Kiriakidis S, Hugel A, Jha HC, Mazitschek R et al. (1999). Angew Chem Int Ed Engl 38: 3228–3231.

  • Yamamoto H, Flannery ML, Kupriyanov S, Pearce J, McKercher SR, Henkel GW et al. (1998). Genes Dev 12: 1315–1326.

  • Yang BS, Hauser CA, Henkel G, Colman MS, Van Beveren C, Stacey KJ et al. (1996). Mol Cell Biol 16: 538–547.

  • Ye S, Whatling C, Watkins H, Henney A . (1999). FEBS Lett 450: 268–272.

  • Zhang Y, Griffith EC, Sage J, Jacks T, Liu JO . (2000). Proc Natl Acad Sci USA 97: 6427–6432.

  • Zucker S, Cao J, Chen WT . (2000). Oncogene 19: 6642–6650.

Download references

Acknowledgements

We thank Drs J Coll and Y Rouillé for generous gift of pSUPER constructs, Dr D Tulasne for practical guidance and C Lagrou for technical assistance. We are grateful to Dr V Fafeur and Dr V Mattot for providing pCDNA3-Ets-1dn construct. This work was supported by a grant from the Comité du Nord de la Ligue contre le Cancer. The Ligue Nationale contre le Cancer provided student fellowships for David Baillat and Gabriel Leprivier and a postdoctoral fellowship for Dr Nadejda Vintonenko.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Aumercier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baillat, D., Leprivier, G., Régnier, D. et al. Stromelysin-1 expression is activated in vivo by Ets-1 through palindromic head-to-head Ets binding sites present in the promoter. Oncogene 25, 5764–5776 (2006). https://doi.org/10.1038/sj.onc.1209583

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209583

Keywords

This article is cited by

Search

Quick links