Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CpG island promoter methylation and silencing of 14-3-3σ gene expression in LNCaP and Tramp-C1 prostate cancer cell lines is associated with methyl-CpG-binding protein MBD2

Abstract

14-3-3σ proteins regulate numerous cellular processes that are important to cancer development. One of its biological roles involves G2 cell-cycle arrest following DNA damage. It has also been reported that the loss of 14-3-3σ expression via CpG methylation may contribute to malignant transformation by impairing the G2 cell-cycle checkpoint function, thereby allowing an accumulation of genetic defects. However, how the CpG methylation-dependent silencing mechanism works in relation to promoter methylation associated with methyl-CpG-binding proteins (MeCPs) is still unclear. To better understand the mechanism, we first examined the methylation status of the 14-3-3σ promoter-associated CpG islands and 14-3-3σ gene expression in a subset of prostate cancer cell lines using methylation-specific PCR (MSP), an HhaI-based DNA methylation assay, and reverse transcription–PCR (RT–PCR). We found that the 14-3-3σ expression is lost in LNCaP and Tramp-C1 prostate cancer cell lines and that this expression is restored after treatment with epigenetic silencing modifiers 5-aza-2′-deoxycytidine (5-aza) and trichostatin A (TSA). These results imply transcriptional silencing via promoter-associated CpG methylation. Chromatin immunoprecipitation analysis revealed that methyl-CpG-binding protein 2 (MBD2) is associated preferentially to the methylated CpG island in the 14-3-3σ promoter in LNCaP and Tramp-C1 cells but not in 14-3-3σ-expressing PC3 and DU145 cells, which contain an unmethylated CpG island in the 14-3-3σ promoter region. The 14-3-3σ gene silencing because of CpG methylation correlates with binding of MBD2. In addition, the activation of 14-3-3σ gene expression by a combination of 5-aza and TSA also involves the release of the MBD2 from the 14-3-3σ promoter-methylated CpG island in LNCaP and Tramp-C1 cells. Furthermore, MBD2 knockdown by siRNA stimulated 14-3-3σ expression in LNCaP cells. We also investigated whether the loss of 14-3-3σ expression in LNCaP and Tramp-C1 cells affects cell proliferation by MTT assays. Interestingly, we observed that 14-3-3σ-inactivated LNCaP and Tramp-C1 cells had markedly decreased cell proliferation and protein expression of proliferation cell nuclear antigen (PCNA) after restoration of 14-3-3σ expression with 5-aza and TSA treatment. On the other hand, the same treatment did not significantly affect 14-3-3σ-active PC3 and DU145 cells, which normally express 14-3-3σ. Finally, 14-3-3σ knockdown by siRNA resulted in increased proliferation in PC3 and DU145 cells. These findings suggest that the transcriptional silencing of the 14-3-3σ gene is caused by promoter CpG island methylation associated with MBD2, and that this may play an important role in prostate cancer progression during the invasive and metastatic stages of the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

ChIP:

chromoatin immunoprecipitation

HDAC:

histone deacetylase

MBD2 :

methyl-CpG-binding protein 2

MSP:

methylation-specific PCR

RNAi:

RNA interference

siRNA:

small-interfering RNA

5-aza:

5-aza-2′-deoxycytidine

TSA:

trichostatin A

RT:

reverse transcription

TPBS:

Tween-20 (0.1%) phospate-buffered saline

PBS:

phospate-buffered saline

PIN:

prostatic intraepithelial neoplasia

BSA:

bovine serum albumin

References

  • Baylin SB, Herman JG . (2000). Trends Genet 16: 168–174.

  • Bird A . (2002). Genes Dev 16: 6–21.

  • Bird AP, Wolffe AP . (1999). Cell 99: 451–454.

  • Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B . (1999). Nature 401: 616–620.

  • Cheng L, Pan CX, Zhang JT, Zhang S, Kinch MS, Li L et al. (2004). Clin Cancer Res 10: 3064–3068.

  • Darwanto A, Kitazawa R, Maeda S, Kitazawa S . (2003). Cancer Sci 94: 442–447.

  • De Smet C, Loriot A, Boon T . (2004). Mol Cell Biol 24: 4781–4790.

  • Dougherty MK, Morrison DK . (2004). J Cell Sci 117: 1875–1884.

  • Ego T, Tanaka Y, Shimotohno K . (2005). Oncogene 24: 1914–1923.

  • Esteller M . (2005). Annu Rev Pharmacol Toxicol 45: 629–656.

  • Esteller M, Risques RA, Toyota M, Capella G, Moreno V, Peinado MA et al. (2001). Cancer Res 61: 4689–4692.

  • Ferguson AT, Evron E, Umbricht CB, Pandita TK, Chan TA, Hermeking H et al. (2000). Proc Natl Acad Sci USA 97: 6049–6054.

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G et al. (2005). Nat Genet 37: 391–400.

  • Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW et al. (1992). Proc Natl Acad Sci USA 89: 1827–1831.

  • Fu H, Subramanian RR, Masters SC . (2000). Annu Rev Pharmacol Toxicol 40: 617–647.

  • Fujita N, Takebayashi S, Okumura K, Kudo S, Chiba T, Saya H et al. (1999). Mol Cell Biol 19: 6415–6426.

  • Galm O, Suzuki H, Akiyama Y, Esteller M, Brock MV, Osieka R et al. (2005). Oncogene 24: 4799–4805.

  • Goodman PA, Burkhardt N, Juran B, Tibbles HE, Uckun FM . (2003). Oncogene 22: 2504–2514.

  • Hermeking H . (2003). Nat Rev Cancer 3: 931–943.

  • Iwata N, Yamamoto H, Sasaki S, Itoh F, Suzuki H, Kikuchi T et al. (2000). Oncogene 19: 5298–5302.

  • Jenuwein T, Allis CD . (2001). Science 293: 1074–1080.

  • Jones PA . (1999). Trends Genet 15: 34–37.

  • Jones PA, Baylin SB . (2002). Nat Rev Genet 3: 415–428.

  • Jones PA, Laird PW . (1999). Nat Genet 21: 163–167.

  • Kaneuchi M, Sasaki M, Tanaka Y, Shiina H, Verma M, Ebina Y et al. (2004). Biochem Biophys Res Commun 316: 1156–1162.

  • Kitazawa S, Kitazawa R, Maeda S . (1999). J Biol Chem 274: 28787–28793.

  • Konduri SD, Srivenugopal KS, Yanamandra N, Dinh DH, Olivero WC, Gujrati M et al. (2003). Oncogene 22: 4509–4516.

  • Lin X, Nelson WG . (2003). Cancer Res 63: 498–504.

  • Lodygin D, Diebold J, Hermeking H . (2004). Oncogene 23: 9034–9041.

  • Lodygin D, Hermeking H . (2005). Cell Res 15: 237–246.

  • Lodygin D, Yazdi AS, Sander CA, Herzinger T, Hermeking H . (2003). Oncogene 22: 5519–5524.

  • McKie AB, Douglas DA, Olijslagers S, Graham J, Omar MM, Heer R et al. (2005). Oncogene 24: 2166–2174.

  • Mhawech P . (2005). Cell Res 15: 228–236.

  • Mhawech P, Benz A, Cerato C, Greloz V, Assaly M, Desmond JC et al. (2005). Mod Pathol 18: 340–348.

  • Muslin AJ, Xing H . (2000). Cell Signal 12: 703–709.

  • Nakagawachi T, Soejima H, Urano T, Zhao W, Higashimoto K, Satoh Y et al. (2003). Oncogene 22: 8835–8844.

  • Nguyen CT, Gonzales FA, Jones PA . (2001). Nucleic Acids Res 29: 4598–4606.

  • Osada H, Tatematsu Y, Yatabe Y, Nakagawa T, Konishi H, Harano T et al. (2002). Oncogene 21: 2418–2424.

  • Pakneshan P, Szyf M, Farias-Eisner R, Rabbani SA . (2004). J Biol Chem 279: 31735–31744.

  • Pakneshan P, Xing RH, Rabbani SA . (2003). FASEB J 17: 1081–1088.

  • Park J, Song SH, Kim TY, Choi MC, Jong HS, Kim TY et al. (2004). Oncogene 23: 3474–3480.

  • Patra SK, Patra A, Zhao H, Carroll P, Dahiya R . (2003). Biochem Biophys Res Commun 302: 759–766.

  • Reichelt J, Magin TM . (2002). J Cell Sci 115: 2639–2650.

  • Santini V, Kantarjian HM, Issa JP . (2001). Ann Intern Med 134: 573–586.

  • Sharma D, Blum J, Yang X, Beaulieu N, Macleod AR, Davidson NE . (2005). Mol Endocrinol 19: 1740–1751.

  • Singal R, Ginder GD . (1999). Blood 93: 4059–4070.

  • Singal R, van Wert J, Bashambu M . (2001). Cancer Res 61: 4820–4826.

  • Stirzaker C, Song JZ, Davidson B, Clark SJ . (2004). Cancer Res 64: 3871–3877.

  • Tanaka K, Hatada T, Kobayashi M, Mohri Y, Tonouchi H, Miki C et al. (2004). Int J Oncol 25: 1591–1597.

  • Tate PH, Bird AP . (1993). Curr Opin Genet Dev 3: 226–231.

  • Tzivion G, Avruch J . (2002). J Biol Chem 277: 3061–3064.

  • Tzivion G, Shen YH, Zhu J . (2001). Oncogene 20: 6331–6338.

  • Urano T, Takahashi S, Suzuki T, Fujimura T, Fujita M, Kumagai J et al. (2004). Biochem Biophys Res Commun 319: 795–800.

  • Woodcock JM, Murphy J, Stomski FC, Berndt MC, Lopez AF . (2003). J Biol Chem 278: 36323–36327.

  • Yatabe Y, Osada H, Tatematsu Y, Mitsudomi T, Takahashi T . (2002). Oncogene 21: 8310–8319.

  • Yu F, Thiesen J, Stratling WH . (2000). Nucleic Acids Res 28: 2201–2206.

  • Zhang Y, Karas M, Zhao H, Yakar S, LeRoith D . (2004). J Biol Chem 279: 34353–34360.

Download references

Acknowledgements

We thank Shellee Abraham for preparing the manuscript and Diana Meister and Sushma Jasti for the manuscript review. This research was supported by National Cancer Institute Grant CA 75557, CA 92393, CA 95058, CA 116708 and NINDS NS47699 and Caterpillar, Inc., OSF Saint Francis Medical Center, Peoria, IL (to JSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pulukuri, S., Rao, J. CpG island promoter methylation and silencing of 14-3-3σ gene expression in LNCaP and Tramp-C1 prostate cancer cell lines is associated with methyl-CpG-binding protein MBD2. Oncogene 25, 4559–4572 (2006). https://doi.org/10.1038/sj.onc.1209462

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209462

Keywords

This article is cited by

Search

Quick links