Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Caspase-9 and effector caspases have sequential and distinct effects on mitochondria

Abstract

Proapoptotic Bcl-2 family members alter mitochondrial permeability resulting in the release of apoptogenic factors that initiate a caspase cascade. These changes are well described; however, the effects of caspases on mitochondrial function are less well characterized. Here we describe the consequence of caspase-9 and effector caspase inhibition on mitochondrial physiology during intrinsic cell death. Caspase inhibition prevents the complete loss of mitochondrial membrane potential without affecting cytochrome c release. When effector caspases are inhibited, mitochondria become uncoupled and produce reactive oxygen species. Interestingly, the effector caspase-mediated depolarization of the mitochondria occurs independent of the activity of complexes I–IV of the electron transport chain. In contrast, caspase-9 inhibition prevents mitochondrial uncoupling and ROS production and allows for continued electron transport despite the release of cytochrome c. Taken together, these data suggest that activated caspase-9 prevents the accessibility of cytochrome c to complex III, resulting in the production of reactive oxygen species, and that effector caspases may depolarize mitochondria to terminate ROS production and preserve an apoptotic phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 4
Figure 3
Figure 5
Figure 6

Similar content being viewed by others

References

  • Barrientos A, Kenyon L and Moraes CT . (1998). J. Biol. Chem., 273, 14210–14217.

  • Borner C and Monney L . (1999). Cell Death Differ., 6, 497–507.

  • Bossy-Wetzel E, Newmeyer DD and Green DR . (1998). EMBO J., 17, 37–49.

  • Bratton SB, Walker G, Roberts DL, Cain K and Cohen GM . (2001). Cell Death Differ., 8, 425–433.

  • Burlacu A, Jinga V, Gafencu AV and Simionescu M . (2001). Cell Tissue Res., 306, 409–416.

  • Cai J and Jones DP . (1998). J. Biol. Chem., 273, 11401–11404.

  • Chandel NS and Schumacker PT . (1999). FEBS Lett., 454, 173–176.

  • Chandra J, Samali A and Orrenius S . (2000). Free Radic. Biol. Med., 29, 323–333.

  • Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T and Korsmeyer SJ . (2001). Mol. Cell, 8, 705–711.

  • Danial NN and Korsmeyer SJ . (2004). Cell, 116, 205–219.

  • Deshmukh M, Kuida K and Johnson Jr EM . (2000). J. Cell. Biol., 150, 131–143.

  • Fearnhead HO, McCurrach ME, O’Neill J, Zhang K, Lowe SW and Lazebnik YA . (1997). Genes Dev., 11, 1266–1276.

  • Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW and Thornberry NA . (1998). J. Biol. Chem., 273, 32608–32613.

  • Goldstein JC, Waterhouse NJ, Juin P, Evan GI and Green DR . (2000). Nat. Cell Biol., 2, 156–162.

  • Gross A, McDonnell JM and Korsmeyer SJ . (1999a). Genes Dev., 13, 1899–1911.

  • Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P and Korsmeyer SJ . (1999b). J. Biol. Chem., 274, 1156–1163.

  • Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL, Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA, Lowe SW, Penninger JM and Mak TW . (1998). Cell, 94, 339–352.

  • Higuchi M, Honda T, Proske RJ and Yeh ET . (1998). Oncogene, 17, 2753–2760.

  • Higuchi Y and Yoshimoto T . (2002). Arch. Biochem. Biophys., 400, 133–140.

  • Johnson BW, Cepero E and Boise LH . (2000). J. Biol. Chem., 275, 31546–31553.

  • Kim TH, Zhao Y, Barber MJ, Kuharsky DK and Yin XM . (2000). J. Biol. Chem., 275, 39474–39481.

  • Kluck RM, Esposti MD, Perkins G, Renken C, Kuwana T, Bossy-Wetzel E, Goldberg M, Allen T, Barber MJ, Green DR and Newmeyer DD . (1999). J. Cell. Biol., 147, 809–822.

  • Kokiszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR and Wallace DC . (2004). Nature, 427, 461–465.

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES and Wang X . (1997). Cell, 91, 479–489.

  • Lowe SW, Cepero E and Evan G . (2004). Nature, 432, 307–315.

  • Martinou I, Desagher S, Eskes R, Antonsson B, Andre E, Fakan S and Martinou JC . (1999). J. Cell Biol., 144, 883–889.

  • Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie ZH, Reed JC and Kroemer G . (1998a). J. Exp. Med., 187, 1261–1271.

  • Marzo I, Susin SA, Petit PX, Ravagnan L, Brenner C, Larochette N, Zamzami N and Kroemer G . (1998b). FEBS Lett., 427, 198–202.

  • Mootha VK, Wei MC, Buttle KF, Scorrano L, Panoutsakopoulou V, Mannella CA and Korsmeyer SJ . (2001). EMBO J., 20, 661–671.

  • Nagata S . (1997). Cell, 88, 355–365.

  • Raha S and Robinson BH . (2001). Am. J. Med. Genet., 106, 62–70.

  • Rathmell JC, Vander Heiden MG, Harris MH, Frauwirth KA and Thompson CB . (2000). Mol. Cell., 6, 683–692.

  • Rego AC, Vesce S and Nicholls DG . (2001). Cell Death Differ., 8, 995–1003.

  • Ricci JE, Gottlieb RA and Green DR . (2003). J. Cell. Biol., 160, 65–75.

  • Ricci JE, Munoz-Pinedo C, Fitzgerald P, Bailly-Maitre B, Perkins GA, Yadava N, Scheffler IE, Ellisman MH and Green DR . (2004). Cell, 117, 773–786.

  • Ryan CA, Stennicke HR, Nava VE, Burch JB, Hardwick JM and Salvesen GS . (2002). Biochem. J., 366, 595–601.

  • Saraste M . (1999). Science, 283, 1488–1493.

  • Samali A, Nordgren H, Zhivotovsky B, Peterson E and Orrenius S . (1999). Biochem. Biophys. Res. Commun., 255, 6–11.

  • Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA and Korsmeyer SJ . (2002). Dev. Cell, 2, 55–67.

  • Shi Y . (2002). Mol. Cell, 9, 459–470.

  • Shimizu S and Tsujimoto Y . (2000). Proc. Natl. Acad. Sci. USA, 97, 577–582.

  • Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT and Thompson CB . (1997). Cell, 91, 627–637.

  • Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH and Thompson CB . (2001). Mol. Cell. Biol., 21, 5899–5912.

  • von Ahsen O, Renken C, Perkins G, Kluck RM, Bossy-Wetzel E and Newmeyer DD . (2000). J. Cell. Biol., 150, 1027–1036.

  • Waterhouse NJ, Goldstein JC, von Ahsen O, Schuler M, Newmeyer DD and Green DR . (2001). J. Cell. Biol., 153, 319–328.

  • Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB and Korsmeyer SJ . (2001). Science, 292, 727–730.

  • Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM and Mak TW . (1998). Cell, 94, 739–750.

Download references

Acknowledgements

We would like to thank Carlos Moraes, Yuri Lazebnik, Colin Duckett, Bryan Johnson, Esther Obeng, Robert Levy, Jennifer McCafferty and Kelvin Lee for reagents, advice and a critical review of the manuscript. This work was supported by F31 GM20435 (EC) and R01 GM65813 (LHB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence H Boise.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cepero, E., King, A., Coffey, L. et al. Caspase-9 and effector caspases have sequential and distinct effects on mitochondria. Oncogene 24, 6354–6366 (2005). https://doi.org/10.1038/sj.onc.1208793

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208793

Keywords

This article is cited by

Search

Quick links