Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Diallyl trisulfide-induced G2–M phase cell cycle arrest in human prostate cancer cells is caused by reactive oxygen species-dependent destruction and hyperphosphorylation of Cdc25C

Abstract

Molecular mechanism of cell cycle arrest caused by diallyl trisulfide (DATS), a garlic-derived cancer chemopreventive agent, has been investigated using PC-3 and DU145 human prostate cancer cells as a model. Treatment of PC-3 and DU145 cells, but not a normal prostate epithelial cell line (PrEC), with growth suppressive concentrations of DATS caused enrichment of the G2–M fraction. The DATS-induced cell cycle arrest in PC-3 cells was associated with increased Tyr15 phosphorylation of cyclin-dependent kinase 1 (Cdk1) and inhibition of Cdk1/cyclinB1 kinase activity. The DATS-treated PC-3 and DU145 cells also exhibited a decrease in the protein level of Cdc25C and an increase in its Ser216 phosphorylation. The DATS-mediated decrease in protein level and Ser216 phosphorylation of Cdc25C as well as G2–M phase cell cycle arrest were significantly attenuated in the presence of N-acetylcysteine implicating reactive oxygen species (ROS) in cell cycle arrest caused by DATS. ROS generation was observed in DATS-treated PC-3 and DU145 cells. DATS treatment also caused an increase in the protein level of Cdk inhibitor p21, but DATS-induced G2–M phase arrest was not affected by antisense-mediated suppression of p21 protein level. In conclusion, the results of the present study indicate that DATS-induced G2–M phase cell cycle arrest in human prostate cancer cells is caused by ROS-mediated destruction and hyperphosphorylation of Cdc25C.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Agarwal KC . (1996). Med. Res. Rev., 16, 111–124.

  • Block E . (1992). Angew. Chem. Int. Ed. Engl., 31, 1135–1178.

  • Bookstein R, Shew J, Chen P, Scully P and Lee W . (1990). Science, 247, 712–715.

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW and Vogelstein B . (1998). Science, 282, 1497–1501.

  • Campbell CL, Savarese DMF, Quesenberry PJ and Savarese TM . (1999). Int. J. Cancer, 80, 868–874.

  • Challier B, Perarnau JM and Viel JF . (1998). Eur. J. Epidemiol., 14, 737–747.

  • Charrier-Savournin FB, Chateau M, Gire V, Sedivy J, Piette J and Dulic V . (2004). Mol. Biol. Cell, 15, 3965–3976.

  • Chen L, Hodge GB, Guarda LA, Welch JL, Greenberg NM and Chai KX . (2001). Prostate, 48, 93–103.

  • Choi S and Singh SV . (2005). Cancer Res., 65, 2035–2043.

  • Dausch JG and Nixon DW . (1990). Prev. Med., 19, 346–361.

  • Draetta G and Eckstein J . (1997). Biochim. Biophys. Acta, 1332, M53–M63.

  • Druesne N, Pagniez A, Mayeur C, Thomas M, Cherbuy C, Duee P, Martel P and Chaumontet C . (2004). Carcinogenesis, 25, 1227–1236.

  • Dulic V, Stein GH, Far DF and Reed SI . (1998). Mol. Cell. Biol., 18, 546–557.

  • Falck J, Mailand N, Syljuasen RG, Bartek J and Lukas J . (2001). Nature, 410, 842–847.

  • Filomeni G, Aquilano K, Rotilio G and Ciriolo MR . (2003). Cancer Res., 63, 5940–5949.

  • Freemerman AJ, Vrana JA, Tombes RM, Jiang H, Chellappan SP, Fisher PB and Grant S . (1997). Leukemia, 11, 504–513.

  • Furnari B, Rhind N and Russell P . (1997). Science, 277, 1495–1497.

  • Gao CM, Takezaki T, Ding JH, Li MS and Tajima K . (1999). Jpn. J. Cancer Res., 90, 614–621.

  • Garraway LA, Lin D, Signoretti S, Waltregny D, Dilks J, Bhattacharya N and Loda M . (2003). Prostate, 55, 206–218.

  • Harper JW, Adami GR, Wei N, Keyomarsi K and Elledge SJ . (1993). Cell, 75, 805–816.

  • Herman-Antosiewicz A and Singh SV . (2004). Mutat. Res., 555, 121–131.

  • Hsing AW, Chokkalingam AP, Gao YT, Madigan MP, Deng J, Gridley G and Fraumeni JF . (2002). J. Natl. Cancer Inst., 94, 1648–1651.

  • Knowles LM and Milner JA . (1998). Nutr. Cancer, 30, 169–174.

  • Knowles LM and Milner JA . (2000). Carcinogenesis, 21, 1129–1134.

  • Kwon KB, Yoo SJ, Ryu DG, Yang JY, Rho HW, Kim JS, Park JW, Kim HR and Park BH . (2002). Biochem. Pharmacol., 63, 41–47.

  • Lan H and Lu Y . (2004). Acta Pharmacol. Sin., 25, 219–225.

  • Li Y and Lu Y . (2002). DNA Cell Biol., 21, 771–780.

  • Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J and Lukas J . (2000). Science, 288, 1425–1429.

  • Matsuoka S, Huang M and Elledge SJ . (1998). Science, 282, 1893–1897.

  • Milner JA . (2001). J. Nutr., 131, 1027s–1031s.

  • Mitchell A, Abel P, Ware M, Stamp G and Lalani E . (2000). BJU Int., 85, 932–944.

  • Molinari M . (2000). Cell Prolif., 33, 261–274.

  • Molinari M, Mercurio C, Dominguez J, Goubin F and Draetta GF . (2000). EMBO Rep., 1, 71–79.

  • Nagae S, Ushijima M, Hatono S, Imai J, Kasuga S, Matsuura H, Itakura Y and Higashi Y . (1994). Planta Med., 60, 214–217.

  • Nakagawa H, Tsuta K, Kiuchi K, Senzaki H, Tanaka K, Hioki K and Tsubura A . (2001). Carcinogenesis, 22, 891–897.

  • Nakamoto T, Chang C, Li A and Chodak GW . (1992). Cancer Res., 52, 571–577.

  • Narayanan PK, Goodwin EH and Lehnert BE . (1997). Cancer Res., 57, 3963–3971.

  • Peng CY, Graves PR, Ogg S, Thoma RS, Byrnes MJ, Wu Z, Stephenson MT and Piwnica-Worms H . (1998). Cell Growth Differ., 9, 197–208.

  • Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS and Piwnica-Worms H . (1997). Science, 277, 1501–1505.

  • Pines J and Hunter T . (1991). J. Cell Biol., 115, 1–17.

  • Reddy BS, Rao CV, Rivenson A and Kelloff G . (1993). Cancer Res., 53, 3493–3498.

  • Robert V, Mouille B, Mayeur C, Michaud M and Blachier F . (2001). Carcinogenesis, 22, 1155–1161.

  • Rothe G and Valet GJ . (1990). J. Leukoc. Biol., 47, 440–448.

  • Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H and Elledge SJ . (1997). Science, 277, 1497–1501.

  • Savitsky PA and Finkel T . (2002). J. Biol. Chem., 277, 20535–20540.

  • Schaffer EM, Liu JZ, Green J, Dangler CA and Milner JA . (1996). Cancer Lett., 102, 199–204.

  • Sherwood SW, Rush DF, Kung AL and Schimke RT . (1994). Exp. Cell Res., 211, 275–281.

  • Shirin H, Pinto JT, Kawabata Y, Soh JW, Delohery T, Moss SF, Murty V, Rivlin RS, Holt PR and Weinstein IB . (2001). Cancer Res., 61, 725–731.

  • Singh SV, Herman-Antosiewicz A, Singh AV, Lew KL, Srivastava SK, Kamath R, Brown KD, Zhang L and Baskaran R . (2004). J. Biol. Chem., 279, 25813–25822.

  • Sparnins VL, Barany G and Wattenberg LW . (1988). Carcinogenesis, 9, 131–134.

  • Sumiyoshi H and Wargovich MJ . (1990). Cancer Res., 50, 5084–5087.

  • Sundaram SG and Milner JA . (1996). Carcinogenesis, 17, 669–673.

  • Suzui N, Sugie S, Rahman KM, Ohnishi M, Yoshimi N, Wakabayashi K and Mori H . (1997). Jpn. J. Cancer Res., 88, 705–711.

  • Takahashi S, Hakoi K, Yada H, Hirose M, Ito N and Fukushima S . (1992). Carcinogenesis, 13, 1513–1518.

  • Taylor WR and Stark GR . (2001). Oncogene, 20, 1803–1815.

  • Vogt A, Tamura K, Watson S and Lazo JS . (2000). J. Pharmacol. Exp. Therapeut., 294, 1070–1075.

  • Wargovich MJ . (1987). Carcinogenesis, 8, 487–489.

  • Wargovich MJ, Woods C, Eng VWS, Stephens LC and Gray K . (1988). Cancer Res., 48, 6872–6875.

  • Wattenberg LW, Sparnins VL and Barany G . (1989). Cancer Res., 49, 2689–2692.

  • Webber M, Bello D and Quader S . (1997a). Prostate, 30, 58–64.

  • Webber M, Bello D and Quader S . (1997b). Prostate, 30, 136–142.

  • Widrow RJ, Rabinovitch PS, Cho K and Laird CD . (1997). Cytometry, 27, 250–254.

  • Winters ZE, Ongkeko WM, Harris AL and Norbury CJ . (1998). Oncogene, 17, 673–684.

  • Xiao D, Choi S, Johnson DE, Vogel VG, Johnson CS, Trump DL, Lee YJ and Singh SV . (2004). Oncogene, 23, 5594–5606.

  • Xiao D, Pinto JT, Soh JW, Deguchi A, Gundersen GG, Palazzo AF, Yoon JT, Shirin H and Weinstein IB . (2003). Cancer Res., 63, 6825–6837.

  • Xiao D and Singh SV . (2002). Cancer Res., 62, 3615–3619.

  • You WC, Blot WJ, Chang YS, Ershow A, Yang ZT, An Q, Henderson BE, Fraumeni JF and Wang TG . (1989). J. Natl. Cancer Inst., 81, 162–164.

Download references

Acknowledgements

This study was supported in part by United States Public Health Service Grants RO1 CA113363-01, RO1 CA101753-02 and RO1 CA076348-07 (to SVS) awarded by the National Cancer Institute, and a Developmental Research Grant from the UPCI Lung Cancer SPORE. We thank Karen Lew and Yan Zeng for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivendra V Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, D., Herman-Antosiewicz, A., Antosiewicz, J. et al. Diallyl trisulfide-induced G2–M phase cell cycle arrest in human prostate cancer cells is caused by reactive oxygen species-dependent destruction and hyperphosphorylation of Cdc25C. Oncogene 24, 6256–6268 (2005). https://doi.org/10.1038/sj.onc.1208759

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208759

Keywords

This article is cited by

Search

Quick links