Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Rapamycin induces apoptosis of JN-DSRCT-1 cells by increasing the Bax : Bcl-xL ratio through concurrent mechanisms dependent and independent of its mTOR inhibitory activity

Abstract

Rapamycin, a complex macrolide and potent fungicide, immunosuppressant and anticancer agent, is a highly specific inhibitor of mammalian target of rapamycin (mTOR). Rapamycin has been shown to induce G1-phase cell cycle arrest in diverse tumor cell types, and its derivatives RAD001 and CCI-779 are currently in phase I and phase II clinical trials, respectively, as anticancer agents. In this study, we show that rapamycin induced the apoptotic death of JN-DSRCT-1 cells, the only available in vitro model for Desmoplastic Small Round Cell Tumors (DSRCT), while having only minor effects on their cell cycle. Rapamycin induced apoptosis by increasing the Bax : Bcl-xL ratio as a consequence of the concomitant downregulation of Bcl-xL and upregulation of Bax, both at the post-transcriptional level. Rapamycin also downregulated the levels of EWS/WT1, the fusion protein characteristic of DSRCT. Transient transfection studies using kinase-dead and rapamycin-resistant forms of mTOR demonstrated that only the downregulation of Bcl-xL was caused by the mTOR inhibitory action of rapamycin, which prevented cap-dependent translation initiation, whereas Bax upregulation was induced by rapamycin through a mechanism independent of its mTOR inhibitory activity. Moreover, rapamycin treatment downregulated the mRNA and protein levels of the 26S p44.5 proteasome subunit, suggesting the involvement of the proteasome complex in the mechanisms of rapamycin-induced apoptosis. Treatment of JN-DSRCT-1 cells with MG-132, a proteasome specific inhibitor, also resulted in the induction of apoptosis through a similar increase in the Bax : Bcl-xL ratio specifically caused by inhibiting Bax degradation and turnover. These results suggested that rapamycin induces apoptosis by preventing the degradation of the Bax protein by the proteasome, and that this process is independent of mTOR inhibition. Furthermore, these results strongly support the introduction of the use of rapamycin as a cytotoxic agent for the treatment of DSRCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aranha O, Grignon R, Fernandes N, McDonnell TJ, Wood Jr DP and Sarkar FH . (2003). Int. J. Oncol., 22, 787–794.

  • Bertolotti A, Lutz Y, Heard DJ, Chambon P and Tora L . (1996). EMBO J., 15, 5022–5031.

  • Biegel JA, Conard K and Brooks JJ . (1993). Genes Chromosomes Cancer, 7, 119–121.

  • Bierer BE, Mattila PS, Standaert RF, Herzenberg LA, Burakoff SJ, Crabtree G and Schreiber SL . (1990). Proc. Natl. Acad. Sci. USA, 87, 9231–9235.

  • Bjornsti MA and Houghton PJ . (2004). Cancer Cell, 5, 519–523.

  • Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence Jr JC and Abraham RT . (1997). Science, 277, 99–101.

  • Chang YC, Lee YS, Tejima T, Tanaka K, Omura S, Heintz NH, Mitsui Y and Magae J . (1998). Cell Growth Differ., 9, 79–84.

  • Chung J, Kuo CJ, Crabtree GR and Blenis J . (1992). Cell, 69, 1227–1236.

  • Coenen Schimke JM, Ljungqvist OH, Sarkar G, Conover CA and Sreekumaran Nair K . (1999). Growth Horm. IGF Res., 9, 179–186.

  • Cory S, Huang DC and Adams JM . (2003). Oncogene, 22, 8590–8607.

  • Davis DL and Soldin SJ . (2000). Biochem. Biophys. Res. Commun., 277, 325–329.

  • Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, Kovar H, Joubert I, de Jong P, Rouleau G, Aurias A and Thomas G . (1992). Nature, 359, 162–165.

  • Erbay E, Park IH, Nuzzi PD, Schoenherr CJ and Chen J . (2003). J. Cell Biol., 163, 931–936.

  • Frost P, Moatomed F, Hoang B, Shi Y, Gera J, Yan H, Frost P, Gibbons J and Lichtenstein A . (2004). Blood, 104, 4181–4187.

  • Geoerger B, Kerr K, Tang CB, Fung KM, Powell B, Sutton LN, Phillips PC and Janss AJ . (2001). Cancer Res., 61, 1527–1532.

  • Gerald WL, Rosai J and Ladanyi M . (1995). Proc. Natl. Acad. Sci. USA, 92, 1028–1032.

  • Gingras AC, Gygi S, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R and Sonenberg N . (1999). Genes Dev., 13, 1422–1437.

  • Grolleau A, Bowman J, Pradet-Balade B, Puravs E, Hanash S, Garcia-Sanz JA and Beretta L . (2002). J. Biol. Chem., 277, 22175–22184.

  • Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, Jauch KW and Geissler EK . (2002). Nat. Med., 8, 128–135.

  • Hleb M, Murphy S, Wagner EF, Hanna NN, Sharma N, Park J, Li XC, Strom TB, Padbury JF, Tseng YT and Sharma S . (2004). J. Biol. Chem., 279, 31948–31955.

  • Hosoi H, Dilling MB, Shikata T, Liu LN, Shu L, Ashmun RA, Germain GS, Abraham RT and Houghton PJ . (1999). Cancer Res., 59, 886–894.

  • Huang S, Bjomsti MA and Houghton PJ . (2003). Cancer Biol. Ther., 2, 222–232.

  • Huang S and Houghton PJ . (2001). Drug Resist. Update, 6, 378–391.

  • Huang S and Houghton PJ . (2002). Curr. Opin. Investig. Drugs, 3, 295–304.

  • Iiboshi Y, Papst PJ, Kawasome H, Hosoi H, Abraham RT, Houghton PJ and Terada N . (1998). J. Biol. Chem., 274, 1092–1099.

  • Ito E, Honma R, Imai J, Azuma S, Kanno T, Mori S, Yoshie O, Nishio J, Iwasaki H, Yoshida K, Gohda J, Inoue J, Watanabe S and Semba K . (2003). Am. J. Pathol., 163, 2165–2172.

  • Kim J, Lee K and Pelletier J . (1998a). Oncogene, 16, 1021–1030.

  • Kim J, Lee K and Pelletier J . (1998b). Oncogene, 16, 1973–1979.

  • Ladanyi M and Gerald WL . (1994). Cancer Res., 54, 2837–2840.

  • Lebedeva IV, Su ZZ, Chang Y, Kitada S, Reed JC and Fisher PB . (2002). Oncogene, 21, 708–718.

  • Lee SB and Haber DA . (2001). Exp. Cell Res., 264, 74–99.

  • Li S, Takasu T, Perlman DM, Peterson MS, Burrichter D, Avdulov S, Bitterman PB and Polunovsky VA . (2003). J. Biol. Chem., 278, 3015–3022.

  • Lin TA, Kong X, Haystead TA, Pause A, Belsham G, Sonenberg N and Lawrence Jr JC . (1994). Science, 266, 653–656.

  • Liu FT, Goff LK, Hao JH, Newland AC and Jia L . (2004). Apoptosis, 9, 377–384.

  • Lohrum MAE and Vousden KH . (1999). Cell Death Differ., 6, 1162–1168.

  • Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, Manola J, Brugarolas J, McDonnell TJ, Golub TR, Loda M, Lane HA and Sellers WR . (2004). Nat. Med., 10, 594–601.

  • Mateo-Lozano S, Tirado OM and Notario V . (2003). Oncogene, 22, 9282–9287.

  • May WA, Lessnick SL, Braun BS, Klemsz M, Lewis BC, Lunsford LB, Hromas R and Denny CT . (1993). Mol. Cell. Biol., 13, 7393–7398.

  • Mayerhofer M, Valent P, Sperr WR, Griffin JD and Sillaber C . (2002). Blood, 100, 3767–3775.

  • Mohiuddin I, Cao X, Fang B, Nishizaki M and Smythe WR . (2001). Cancer Gene Ther., 8, 547–554.

  • Nishio J, Iwasaki H, Ishiguro M, Ohjimi Y, Fujita C, Yanai F, Nibu K, Mitsudome A, Kaneko Y and Kikuchi M . (2002). Lab. Invest., 82, 1175–1182.

  • Ohno T, Ouchida M, Lee L, Gatalica Z, Rao VN and Reddy ES . (1994). Oncogene, 9, 3087–3097.

  • Polunovsky VA, Rosenwald IB, Tan AT, White J, Chiang L, Sonenberg N and Bitterman PB . (1996). Mol. Cell. Biol., 16, 6573–6581.

  • Rauscher III FJ, Benjamin LE, Fredericks WJ and Morris JF . (1994). Cold Spring Harb. Symp. Quant. Biol., 59, 137–146.

  • Rauscher III FJ, Morris JF, Tournay OE, Cook DM and Curran T . (1990). Science, 250, 1259–1262.

  • Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G and Abraham RT . (1995). J. Biol. Chem., 270, 815–822.

  • Sawyer JR, Tryka AF and Lewis JM . (1992). Am. J. Surg. Pathol., 16, 411–416.

  • Scharnhorst V, van der Eb AJ and Jochemsen AG . (2001). Gene, 273, 141–161.

  • Schoffstall B, Kataoka A, Clark AN and Chase PB . (2005). J. Pharmacol. Exp. Ther., 312, 12–18.

  • Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM and Abraham RT . (2000). Cancer Res., 60, 3504–3513.

  • Shen WP, Towne B and Zadeh TM . (1992). Cancer Genet. Cytogenet., 64, 189–191.

  • Tan A, Bitterman P, Sonenberg N, Peterson M and Polunovsky V . (2000). Oncogene, 19, 1437–1447.

  • Voorhees PM, Dees EC, O'Neil B and Orlowski RZ . (2003). Clin. Cancer Res., 9, 6316–6325.

  • Wang JA, Fan S, Yuan RQ, Ma YX, Meng Q, Goldberg ID and Rosen EM . (1999). Int. J. Radiat. Biol., 75, 301–316.

  • Wang X, Omura S, Szweda LI, Yang Y, Berard J, Seminaro J and Wu J . (1997). Eur. J. Immunol., 27, 2781–2786.

  • Zhou C, Gehrig PA, Whang YE and Boggess JF . (2003). Mol. Cancer Ther., 2, 789–795.

Download references

Acknowledgements

This work was supported by US Public Health Service Grant PO1-CA74175 from the National Cancer Institute, NIH. Partial support was also provided by the Microscopy and Imaging Macromolecular Analysis and the Flow Cytometry/Cell Sorting Shared Resources of the Vincent T Lombardi Comprehensive Cancer Center, funded through US Public Health Service Grant 2P30-CA51008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Notario.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tirado, O., Mateo-Lozano, S. & Notario, V. Rapamycin induces apoptosis of JN-DSRCT-1 cells by increasing the Bax : Bcl-xL ratio through concurrent mechanisms dependent and independent of its mTOR inhibitory activity. Oncogene 24, 3348–3357 (2005). https://doi.org/10.1038/sj.onc.1208471

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208471

Keywords

This article is cited by

Search

Quick links