Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Ero1-Lα plays a key role in a HIF-1-mediated pathway to improve disulfide bond formation and VEGF secretion under hypoxia: implication for cancer

Abstract

Oxygen is the ultimate source of oxidizing power for disulfide bond formation, suggesting that under limiting oxygen proper protein folding might be compromised. We show that secretion of vascular endothelial growth factor (VEGF), a protein with multiple disulfide bonds, was indeed impeded under hypoxia and was partially restored by artificial increase of oxidizing equivalents with diamide. Physiologically, the oxireductase endoplasmic reticulum oxidoreductin-1 (Ero1)-Lα, but not other proteins in the relay of disulfide formation, was strongly upregulated by hypoxia and independently by hypoglycemia, two known accompaniments of tumors. Further, we provide genetic evidence that induction of Ero1-Lα by hypoxia and hypoglycemia is mediated by the transcription factor hypoxia-inducible factor 1 (HIF-1) but is independent of p53. In natural human tumors, Ero1-Lα mRNA was specifically induced in hypoxic microenvironments coinciding with that of upregulated VEGF expression. To establish a physiological relevance to modulations in Ero1-Lα levels, we showed that even a modest, two- to three-fold reduction in Ero1-Lα production via siRNA leads to significant inhibition of VEGF secretion, a compromised proliferation capacity and enhanced apoptosis. Together, these findings demonstrate that hypoxic induction of Ero1-Lα is the key adaptive response in a previously unrecognized HIF-1-mediated pathway that operates to improve protein secretion under hypoxia and might be harnessed for inhibiting tumor growth via inhibiting VEGF-driven angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 4
Figure 3
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV and Neckers LM . (1998). Nature, 392, 405–408.

  • Barash Y, Elidan G, Kaplan T and Friedman N . (2004). Bioinformatics, Sep 28 [Epub ahead of print].

  • Benda P, Lightbody J, Sato G, Levine L and Sweet W . (1968). Science, 161, 370–371.

  • Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E and Keshet E . (1998). Nature, 394, 485–490.

  • Claffey KP, Senger DR and Spiegelman BM . (1995). Biochim. Biophys. Acta., 1246, 1–9.

  • Czyzyk-Krzeska MF . (1997). Respir. Physiol., 110, 99–111.

  • Ellgaard L and Frickel EM . (2003). Cell Biochem. Biophys., 39, 223–247.

  • Endoh H, Tomida S, Yatabe Y, Konishi H, Osada H, Tajima K, Kuwano H, Takahashi T and Mitsudomi T . (2004). J. Clin. Oncol., 22, 811–819.

  • Ferrari DM and Soling HD . (1999). Biochem. J., 339 (Part 1), 1–10.

  • Firth JD, Ebert BL, Pugh CW and Ratcliffe PJ . (1994). Proc. Natl. Acad. Sci. USA, 91, 6496–6500.

  • Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD and Semenza GL . (1996). Mol. Cell Biol., 16, 4604–4613.

  • Frand AR and Kaiser CA . (1998). Mol. Cell, 1, 161–170.

  • Gavrieli Y, Sherman Y and Ben-Sasson SA . (1992). J. Cell Biol., 119, 493–501.

  • Gess B, Hofbauer KH, Wenger RH, Lohaus C, Meyer HE and Kurtz A . (2003). Eur. J. Biochem., 270, 2228–2235.

  • Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW and Giaccia AJ . (1996). Nature, 379, 88–91.

  • Halterman MW, Miller CC and Federoff HJ . (1999). J. Neurosci., 19, 6818–6824.

  • Ikeda E, Achen MG, Breier G and Risau W . (1995). J. Biol. Chem., 270, 19761–19766.

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS and Kaelin Jr WG . (2001). Science, 292, 464–468.

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW and Ratcliffe PJ . (2001). Science, 292, 468–472.

  • Kuwabara K, Matsumoto M, Ikeda J, Hori O, Ogawa S, Maeda Y, Kitagawa K, Imuta N, Kinoshita T, Stern DM, Yanagi H and Kamada T . (1996). J. Biol. Chem., 271, 5025–5032.

  • Maltepe E, Schmidt JV, Baunoch D, Bradfield CA and Simon MC . (1997). Nature, 386, 403–407.

  • Mazzarella RA, Srinivasan M, Haugejorden SM and Green M . (1990). J. Biol. Chem., 265, 1094–1101.

  • Motro B, Itin A, Sachs L and Keshet E . (1990). Proc. Natl. Acad. Sci. USA, 87, 3092–3096.

  • Muller YA, Li B, Christinger HW, Wells JA, Cunningham BC and de Vos AM . (1997). Proc. Natl. Acad. Sci. USA, 94, 7192–7197.

  • Pagani M, Fabbri M, Benedetti C, Fassio A, Pilati S, Bulleid NJ, Cabibbo A and Sitia R . (2000). J. Biol. Chem., 275, 23685–23692.

  • Potgens AJ, Lubsen NH, van Altena MC, Vermeulen R, Bakker A, Schoenmakers JG, Ruiter DJ and de Waal RM . (1994). J. Biol. Chem., 269, 32879–32885.

  • Rutkowski DT and Kaufman RJ . (2004). Trends. Cell Biol., 14, 20–28.

  • Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM and Johnson RS . (2000). Cancer Res., 60, 4010–4015.

  • Sciandra JJ, Subjeck JR and Hughes CS . (1984). Proc. Natl. Acad. Sci. USA, 81, 4843–4847.

  • Semenza GL . (1999). Annu. Rev. Cell. Dev. Biol., 15, 551–578.

  • Semenza GL . (2000). J. Appl. Physiol., 88, 1474–1480.

  • Semenza GL, Roth PH, Fang HM and Wang GL . (1994). J. Biol. Chem., 269, 23757–23763.

  • Sevier CS, Cuozzo JW, Vala A, Aslund F and Kaiser CA . (2001). Nat. Cell Biol., 3, 874–882.

  • Shima DT, Deutsch U and D'Amore PA . (1995). FEBS Lett., 370, 203–208.

  • Shweiki D, Itin A, Soffer D and Keshet E . (1992). Nature, 359, 843–845.

  • Stein I, Itin A, Einat P, Skaliter R, Grossman Z and Keshet E . (1998). Mol. Cell Biol., 18, 3112–3119.

  • Stein I, Neeman M, Shweiki D, Itin A and Keshet E . (1995). Mol. Cell Biol., 15, 5363–5368.

  • Sullivan DC, Huminiecki L, Moore JW, Boyle JJ, Poulsom R, Creamer D, Barker J and Bicknell R . (2003). J. Biol. Chem., 278, 47079–47088.

  • Tu BP and Weissman JS . (2002). Mol. Cell, 10, 983–994.

  • Tu BP and Weissman JS . (2004). J. Cell Biol., 164, 341–346.

  • Tu BP, Ho-Schleyer SC, Travers KJ and Weissman JS . (2000). Science, 290, 1571–1574.

  • Walter DH, Hink U, Asahara T, Van Belle E, Horowitz J, Tsurumi Y, Vandlen R, Heinsohn H, Keyt B, Ferrara N, Symes JF and Isner JM . (1996). Lab. Invest., 74, 546–556.

  • Wang GL and Semenza GL . (1993). Proc. Natl. Acad. Sci. USA, 90, 4304–4308.

  • Wang GL, Jiang BH and Semenza GL . (1995b). Biochem. Biophys. Res. Commun., 212, 550–556.

  • Wang GL, Jiang BH, Rue EA and Semenza GL . (1995a). Proc. Natl. Acad. Sci. USA, 92, 5510–5514.

Download references

Acknowledgements

This study was supported by a grant from the Belfer Foundation and from Quark Biotech Inc. We thank Yevgeni Kazanov and David Belenki for preparation of anti-Ero-1La antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Keshet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, D., Itin, A., Gal, O. et al. Ero1-Lα plays a key role in a HIF-1-mediated pathway to improve disulfide bond formation and VEGF secretion under hypoxia: implication for cancer. Oncogene 24, 1011–1020 (2005). https://doi.org/10.1038/sj.onc.1208325

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208325

Keywords

This article is cited by

Search

Quick links