Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/ 5-fluorocytosine suicide gene therapy-induced cell death in glioma cells

Abstract

Suicide gene transfer using thymidine kinase (TK) and ganciclovir (GCV) treatment or the cytosine deaminase (CD)/5-fluorocytosine (5-FC) system represents the most widely used approach for gene therapy of cancer. However, molecular pathways and resistance mechanisms remain controversial for GCV-mediated cytotoxicity, and are virtually unknown for the CD/5-FC system. Here, we elucidated some of the cellular pathways in glioma cell lines that were transduced to express the TK or CD gene. In wild-type p53-expressing U87 cells, exposure to GCV and 5-FC resulted in a weak p53 response, although apoptosis was efficiently induced. Cell death triggered by GCV and 5-FC was independent of death receptors, but accompanied by mitochondrial alterations. Whereas expression of Bax remained unaffected, in particular, GCV and also 5-FC caused a decline in the level of Bcl-2. Similar findings were obtained in 9L and T98G glioma cells that express mutant p53, and also underwent mitochondrial apoptosis in both the TK/GCV and CD/5-FC system. Upon treatment of 9L cells with 5-FC, Bcl-xL expression slowly declined, whereas exposure to GCV resulted in the rapid proapoptotic phosphorylation of Bcl-xL. These data suggest that TK/GCV- and CD/5-FC-induced apoptosis does neither require p53 nor death receptors, but converges at a mitochondrial pathway triggered by different mechanisms of modulation of Bcl-2 proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Aghi M, Kramm CM, Chou TC, Breakefield XO and Chiocca EA . (1998). J. Natl. Cancer Inst., 90, 370–380.

  • Asai A, Miyagi Y, Sugiyama A, Gamanuma M, Hong SI, Takamoto S, Nomura K, Matsutani M, Takakura K and Kuchino Y . (1994). J. Neuro-Oncol., 19, 259–268.

  • Bassik MC, Scorrano L, Oakes SA, Pozzan T and Korsmeyer SJ . (2004). EMBO J., 10, 1207–1216.

  • Beltinger C, Fulda S, Kammertoens T, Meyer E, Uckert W and Debatin KM . (1999). Proc. Natl. Acad. Sci. USA, 96, 8699–8704.

  • Beltinger C, Fulda S, Kammertoens T, Uckert W and Debatin KM . (2000). Cancer Res., 60, 3212–3217.

  • Burek C, Roth J, Koch HG, Harzer K, Los M and Schulze-Osthoff K . (2001). Oncogene, 20, 6493–6502.

  • Chen L, Marechal V, Moreau J, Levine AJ and Chen J . (1997). J. Biol. Chem., 36, 22966–22973.

  • Cheng EH-Y, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K and Hardwick JM . (1997). Science, 278, 1966–1968.

  • Daniel PT, Schulze-Osthoff K, Belka C and Guner D . (2003). Essays Biochem., 39, 73–88.

  • Dimmeler S, Breitschopf K, Haendeler J and Zeiher AM . (1999). J. Exp. Med., 189, 1815–1822.

  • Erhardt P, Tomaselli KJ and Cooper GM . (1997). J. Biol. Chem., 272, 15049–15052.

  • Essmann F, Bantel H, Totzke G, Engels IH, Sinha B, Schulze-Osthoff K and Janicke RU . (2003). Cell Death Differ., 10, 1260–1272.

  • Fan M, Goodwin M, Vu T, Brantley-Finley C, Gaarde WA and Chambers TC . (2000). J. Biol. Chem., 275, 29980–29985.

  • Ferrari D, Stepczynska A, Los M, Wesselborg S and Schulze-Osthoff K . (1998). J. Exp. Med., 188, 979–984.

  • Fischer U, Janicke RU and Schulze-Osthoff K . (2003). Cell Death Differ., 10, 76–100.

  • Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL and Abraham GN . (1993). Cancer Res., 53, 5274–5283.

  • Fridman JS and Lowe SW . (2003). Oncogene, 22, 9030–9040.

  • Glaser T, Castro MG, Lowenstein PR and Weller M . (2001). Gene Ther., 8, 469–476.

  • Hamel W, Magnelli L, Chiarugi VP and Israel MA . (1996). Cancer Res., 56, 2697–2702.

  • Haupt Y, Maya R, Kazaz A and Oren M . (1997). Nature, 387, 296–299.

  • Ichikawa T, Tamiya T, Adachi Y, Ono Y, Matsumoto K, Furuta T, Yoshida Y, Hamada H and Ohmoto T . (2000). Cancer Gene Ther., 7, 74–82.

  • Kaneko Y and Tsukamoto A . (1995). Cancer Lett., 96, 105–110.

  • Kharbanda S, Saxena S, Yoshida K, Pandey P, Kaneki M, Wang Q, Cheng K, Chen YN, Campbell A, Sudha T, Yuan ZM, Narula J, Weichselbaum R, Nalin C and Kufe D . (2000). J. Biol. Chem., 275, 322–327.

  • Klatzmann D, Phillipon J, Valery A, Bensimon G and Salzmann J-L . (1996). Hum. Gene Ther., 7, 109–126.

  • Kramm CM, Chase M, Herrlinger U, Jacobs A, Pechan PA, Rainov NG, Sena-Esteves M, Aghi M, Barnett FH, Chiocca EA and Breakefield XO . (1997). Hum. Gene Ther., 8, 2057–2068.

  • Kramm CM, Niehues T and Rainov NG . (2003). Methods Mol. Biol., 215, 137–152.

  • Kramm CM, Sena-Esteves M, Barnett FH, Rainov NG, Schuback DE, Yu JS, Pechan PA, Paulus W, Chiocca EA and Breakefield XO . (1995). Brain Pathol., 5, 345–381.

  • Kubbutat MHG, Jones SN and Vousden KH . (1997). Nature, 387, 299–303.

  • Los M, Wesselborg S and Schulze-Osthoff K . (1999). Immunity, 10, 629–639.

  • May P and May E . (1999). Oncogene, 18, 7621–7636.

  • McMasters RA, Saylors RL, Jones KE, Hendrix ME, Moyer MP and Drake RR . (1998). Hum. Gene Ther., 9, 2253–2261.

  • Milosevic J, Hoffarth S, Huber C and Schuler M . (2003). Oncogene, 22, 6852–6856.

  • Miyashita T, Harigai M, Hanada M and Reed JC . (1994). Cancer Res., 54, 3131–3135.

  • Miyashita T and Reed JC . (1995). Cell, 80, 293–299.

  • Moolten FL . (1986). Cancer Res., 46, 5276–5281.

  • Momand J, Zambetti GP, Olson DC, George DL and Levine AJ . (1992). Cell, 69, 1237–1245.

  • Mullen CA, Kilstrup M. and Blaese RM . (1992). Proc. Natl. Acad. Sci. USA, 89, 33–37.

  • Nanda D, Vogels R, Havenga M, Avezaat CJ, Bout A and Smitt PS . (2001). Cancer Res., 61, 8743–8750.

  • Oldfield EH, Ram Z, Culver KW, Blaese RM, DeVroom HL and Anderson WF . (1993). Hum. Gene Ther., 4, 39–69.

  • Poruchynsky MS, Wang EE, Rudin CM, Blagosklonnny MV and Fojo T . (1998). Cancer Res., 58, 3331–3339.

  • Rainov NG . (2000). Hum. Gene Ther., 11, 2389–2401.

  • Rainov NG and Kramm CM . (2001). Curr. Gene Ther., 1, 367–383.

  • Schilsky RL . (1998). Oncology, 12, 13–18.

  • Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S and Peter ME . (1998). Eur. J. Biochem., 254, 439–459.

  • Stroh C and Schulze-Osthoff K . (1998). Cell Death Differ., 5, 997–1000.

  • Tomicic MT, Thust R and Kaina B . (2002). Oncogene, 21, 2141–2153.

  • Totzke G, Schulze-Osthoff K and Janicke RU . (2003). Oncogene, 22, 8021–8030.

  • Van Meir EG, Kikuchi T, Tada M, Li H, Diserens A-C, Wojcik BE, Huang H-JS, Friedmann T, de Tribolet N and Cavanee WK . (1994). Cancer Res., 54, 649–652.

  • Vousden KH and Lu X . (2002). Nat. Rev. Cancer, 2, 594–604.

  • Wallace H, Clarke AR, Harrison DJ, Hooper ML and Bishop JO . (1996). Oncogene, 13, 55–61.

  • Wei J, Blum S, Unger M, Jarmy G, Lamparter M, Geishauser A, Vlastos GA, Chan G, Fischer KD, Rattat D, Debatin KM, Hatzopoulos AK and Beltinger C . (2004). Cancer Cell, 5, 477–488.

  • Wei SJ, Chao Y, Hung YM, Lin WC, Yang DM, Shih YL, Chang LY, Whang-Peng J and Yang WK . (1998). Exp. Cell Res., 241, 66–75.

  • Wei SJ, Chao Y, Shih YL, Yang DM, Hung YM and Yang WK . (1999). Gene Ther., 6, 420–431.

  • Weizsaecker M, Deen DF, Rosenblum ML, Hoshino T, Gutin PH and Barker M . (1981). J. Neurol., 224, 183–192.

  • Wesselborg S, Engels IH, Rossmann E, Los M and Schulze-Osthoff K . (1999). Blood, 93, 3053–3063.

  • Wieder T, Essmann F, Prokop A, Schmelz K, Schulze-Osthoff K, Beyaert R, Dörken B and Daniel PT . (2001). Blood, 97, 1378–1387.

  • Wu Y, Mehew JW, Heckman CA, Arcinas M and Boxer LM . (2001). Oncogene, 20, 240–251.

  • Xie Y, Gilbert JD, Kim JH and Freytag SO . (1999). Clin. Cancer Res., 5, 4224–4232.

  • Zimmer C, Wright Jr SC, Engelhardt RT, Johnson GA, Kramm C, Breakefield XO and Weissleder R . (1997). Exp. Neurol., 143, 61–69.

Download references

Acknowledgements

This study was supported by grants from the BioRegio program of the German Ministry of Research and Technology (Forschungsverbund Somatische Gentherapie), the Deutsche Forschungsgemeinschaft (DFG Kr1711/1-1), and the Elterninitiative Kinderkrebsklinik Düsseldorf e.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Schulze-Osthoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, U., Steffens, S., Frank, S. et al. Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/ 5-fluorocytosine suicide gene therapy-induced cell death in glioma cells. Oncogene 24, 1231–1243 (2005). https://doi.org/10.1038/sj.onc.1208290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208290

Keywords

This article is cited by

Search

Quick links