Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Molecular signature of oncogenic ras-induced senescence

Abstract

Senescence irreversibly arrests the proliferation of cells that have sustained significant cellular stress. Replicative senescence, due to the shortening and dysfunction of telomeres, appears to provide a barrier to the immortalization of cells and development of cancer. In normal human fibroblasts, senescence induced by oncogenic H-ras displays a nearly identical cellular phenotype to that of replicative senescence, suggesting the activation of a common senescence mechanism. In this study, we investigated the gene expression profile of oncogenic H-ras-induced senescent human diploid fibroblasts. We found altered gene expression of various cell cycle regulators in both oncogenic H-ras-induced senescent cells and replicative senescent cells. Similar to replicative senescent cells, H-ras-induced senescent cells exhibited specific downregulation of genes involved in G2/M checkpoint control and contained tetraploid cells that were arrested in a G1 state. This observation suggests that the inactivation of G2/M checkpoints may be involved in senescence and may play a role in the generation of senescent G1 tetraploid cells. Lastly, we have identified two genes, topoisomerase IIα and HDAC9, whose expression was specifically altered under several conditions associated with senescence, suggesting that these two molecules may be novel biomarkers for senescent human fibroblasts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Altieri DC . (2003). Oncogene, 22, 8581–8589.

  • Andreassen PR, Lohez OD, Lacroix FB and Margolis RL . (2001). Mol. Biol. Cell, 12, 1315–1328.

  • Benanti JA and Galloway DA . (2004). Cell Cycle, 3, 715–717.

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S and Wright WE . (1998). Science, 279, 349–352.

  • Brookes S, Rowe J, Ruas M, Llanos S, Clark PA, Lomax M, James MC, Vatcheva R, Bates S, Vousden KH, Parry D, Gruis N, Smit N, Bergman W and Peters G . (2002). EMBO J., 21, 2936–2945.

  • Cam H and Dynlacht BD . (2003). Cancer Cell, 3, 311–316.

  • Campisi J . (1992). Ann. NY Acad. Sci., 663, 195–201.

  • Campisi J . (2001). Sci. World J., 1, 65.

  • Campisi J . (2003). Nat. Rev. Cancer, 3, 339–349.

  • Castro ME, Guijarro Md Mdel V, Moneo V and Carnero A . (2004). J. Cell Biochem., 92, 514–524.

  • Chang BD, Watanabe K, Broude EV, Fang J, Poole JC, Kalinichenko TV and Roninson IB . (2000). Proc. Natl. Acad. Sci. USA, 97, 4291–4296.

  • Chang BD, Xuan Y, Broude EV, Zhu H, Schott B, Fang J and Roninson IB . (1999). Oncogene, 18, 4808–4818.

  • Chen QM, Bartholomew JC, Campisi J, Acosta M, Reagan JD and Ames BN . (1998). Biochem. J., 332 (Part 1), 43–50.

  • Classon M and Harlow E . (2002). Nat. Rev. Cancer, 2, 910–917.

  • Cong YS, Wright WE and Shay JW . (2002). Microbiol. Mol. Biol. Rev., 66, 407–425 (table of contents).

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M and Campisi J . (1995). Proc. Natl. Acad. Sci. USA, 92, 9363–9367.

  • DiNardo S, Voelkel K and Sternglanz R . (1984). Proc. Natl. Acad. Sci. USA, 81, 2616–2620.

  • Gao L, Cueto MA, Asselbergs F and Atadja P . (2002). J. Biol. Chem., 277, 25748–25755.

  • Gray SG and Ekstrom TJ . (2001). Exp. Cell Res., 262, 75–83.

  • Greider CW . (2000). Harvey Lect., 96, 33–50.

  • Harley CB, Futcher AB and Greider CW . (1990). Nature, 345, 458–460.

  • Hayflick L . (1965). Exp. Cell Res., 37, 614–636.

  • Huot TJ, Rowe J, Harland M, Drayton S, Brookes S, Gooptu C, Purkis P, Fried M, Bataille V, Hara E, Newton-Bishop J and Peters G . (2002). Mol. Cell Biol., 22, 8135–8143.

  • Kao HY, Lee CH, Komarov A, Han CC and Evans RM . (2002). J. Biol. Chem., 277, 187–193.

  • Karlseder J, Smogorzewska A and de Lange T . (2002). Science, 295, 2446–2449.

  • Kramer DL, Chang BD, Chen Y, Diegelman P, Alm K, Black AR, Roninson IB and Porter CW . (2001). Cancer Res., 61, 7754–7762.

  • Laemmli UK . (1970). Nature, 227, 680–685.

  • Larsen AK, Escargueil AE and Skladanowski A . (2003). Prog. Cell Cycle Res., 5, 295–300.

  • Larsson O, Scheele C, Liang Z, Moll J, Karlsson C and Wahlestedt C . (2004). Cancer Res., 64, 482–489.

  • Legube G and Trouche D . (2003). EMBO Rep., 4, 944–947.

  • Lin AW and Lowe SW . (2001). Proc. Natl. Acad. Sci. USA, 98, 5025–5030.

  • Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M and Lowe SW . (1998). Genes Dev., 12, 3008–3019.

  • Ly DH, Lockhart DJ, Lerner RA and Schultz PG . (2000). Science, 287, 2486–2492.

  • Mallette FA, Goumard S, Gaumont-Leclerc MF, Moiseeva O and Ferbeyre G . (2004). Oncogene, 23, 91–99.

  • Margolis RL, Lohez OD and Andreassen PR . (2003). J. Cell Biochem., 88, 673–683.

  • McConnell BB, Starborg M, Brookes S and Peters G . (1998). Curr. Biol., 8, 351–354.

  • Mollinari C, Kleman JP, Jiang W, Schoehn G, Hunter T and Margolis RL . (2002). J. Cell Biol., 157, 1175–1186.

  • Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL, Hannon GJ and Lowe SW . (2003). Cell, 113, 703–716.

  • Nitiss JL . (1998). Biochim. Biophys. Acta, 1400, 63–81.

  • Olsen CL, Gardie B, Yaswen P and Stampfer MR . (2002). Oncogene, 21, 6328–6339.

  • Petrie K, Guidez F, Howell L, Healy L, Waxman S, Greaves M and Zelent A . (2003). J. Biol. Chem., 278, 16059–16072.

  • Rangarajan A and Weinberg RA . (2003). Nat. Rev. Cancer, 3, 952–959.

  • Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA and Dynlacht BD . (2002). Genes Dev., 16, 245–256.

  • Robles SJ and Adami GR . (1998). Oncogene, 16, 1113–1123.

  • Roninson IB . (2003). Cancer Res., 63, 2705–2715.

  • Saavedra HI, Fukasawa K, Conn CW and Stambrook PJ . (1999). J. Biol. Chem., 274, 38083–38090.

  • Serrano M, Lin AW, McCurrach ME, Beach D and Lowe SW . (1997). Cell, 88, 593–602.

  • Shay JW and Roninson IB . (2004). Oncogene, 23, 2919–2933.

  • Shelton DN, Chang E, Whittier PS, Choi D and Funk WD . (1999). Curr. Biol., 9, 939–945.

  • Sherwood SW, Rush D, Ellsworth JL and Schimke RT . (1988). Proc. Natl. Acad. Sci. USA, 85, 9086–9090.

  • Singh NP, McCoy MT, Tice RR and Schneider EL . (1988). Exp. Cell Res., 175, 184–191.

  • Suzuki K, Mori I, Nakayama Y, Miyakoda M, Kodama S and Watanabe M . (2001). Radiat. Res., 155, 248–253.

  • Trimarchi JM and Lees JA . (2002). Nat. Rev. Mol. Cell Biol., 3, 11–20.

  • Uemura T, Ohkura H, Adachi Y, Morino K, Shiozaki K and Yanagida M . (1987). Cell, 50, 917–925.

  • Wang JC . (2002). Nat. Rev. Mol. Cell Biol., 3, 430–440.

  • Wang W, Chen JX, Liao R, Deng Q, Zhou JJ, Huang S and Sun P . (2002). Mol. Cell Biol., 22, 3389–3403.

  • Weebadda WKC, Jackson T and Lin AW . (2004) in press.

  • Wei W, Jobling WA, Chen W, Hahn WC and Sedivy JM . (2003). Mol. Cell Biol., 23, 2859–2870.

  • Wells SI, Aronow BJ, Wise TM, Williams SS, Couget JA and Howley PM . (2003). Proc. Natl. Acad. Sci. USA, 100, 7093–7098.

  • Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO and Botstein D . (2002). Mol. Biol. Cell, 13, 1977–2000.

  • Zhou X, Marks PA, Rifkind RA and Richon VM . (2001). Proc. Natl. Acad. Sci. USA, 98, 10572–10577.

  • Zhu J, Woods D, McMahon M and Bishop JM . (1998). Genes Dev., 12, 2997–3007.

Download references

Acknowledgements

We thank J Platt and L Stein of the Gene Expression Core Facility at Roswell Park Cancer Institute for their assistance with the microarray analysis. We are also grateful to Dr J Black and Dr A Black for generously providing antibodies, Dr M Kimura and Dr H Nagase for assistance with real-time PCR, Dr M McHugh and Dr T Beerman for reagents and assistance with the comet assay, Dr F Li and Dr I Roninson (Ordway Research Institute, Inc.) for PCR primer sequences. We also thank Dr M Brattain, Dr C Porter, Dr J Black, Dr T Beerman, Dr W Weebadda and T Bihani for critical reading and helpful comments of this manuscript. This work was supported by the Roswell Park Cancer Center Core Grant CA16056 and the Greater Buffalo Community Foundation contract Grant number 6234401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athena W Lin.

Additional information

Supplementary Information accompanies the paper on Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, D., Jackson, T. & Lin, A. Molecular signature of oncogenic ras-induced senescence. Oncogene 23, 9238–9246 (2004). https://doi.org/10.1038/sj.onc.1208172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208172

Keywords

This article is cited by

Search

Quick links