Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Mutant ras-induced proliferation of human thyroid epithelial cells requires three effector pathways

Abstract

Ras mutations occur as an early event in many human tumours of epithelial origin, including thyroid. Using primary human thyroid epithelial cells to model tumour initiation by Ras, we have shown previously that activation of both the MAP kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) effector pathways are necessary, but even when activated together are not sufficient, for Ras-induced proliferation. Here, we show that a third effector, RalGEF, is also activated by Ras in these cells, that this activation is necessary for Ras-induced proliferation, and furthermore that in combination with the MAPK and PI3K effectors, it is able to reproduce the proliferative effect of activated Ras. The requirement for three effector pathways indicates a more robust control of cell proliferation in this normal human epithelial cell type than has been displayed in previous similar studies using rodent and human cell lines. Our findings highlight the importance of the appropriate cellular context in models of Ras-induced tumour development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • al-Alawi N, Rose DW, Buckmaster C, Ahn N, Rapp U, Meinkoth J and Feramisco JR . (1995). Mol. Cell. Biol., 15, 1162–1168.

  • Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N and Perucho M . (1988). Cell, 53, 549–554.

  • Bond JA, Wyllie FS, Rowson J, Radulescu A and Wynford-Thomas D . (1994). Oncogene, 9, 281–290.

  • Bos JL . (1989). Cancer Res., 49, 4682–4689.

  • Cass LA and Meinkoth JL . (2000). Oncogene, 19, 924–932.

  • Cass LA, Summers SA, Prendergast GV, Backer JM, Birnbaum MJ and Meinkoth JL . (1999). Mol. Cell. Biol., 19, 5882–5891.

  • Chien Y and White MA . (2003). EMBO Rep., 4, 800–806.

  • Cobellis G, Missero C and Di Lauro R . (1998). Oncogene, 17, 2047–2057.

  • Cowley S, Paterson H, Kemp P and Marshall CJ . (1994). Cell, 77, 841–852.

  • Cullen PJ and Venkateswarlu K . (1999). Biochem. Soc. Trans., 27, 683–689.

  • De Ruiter ND, Burgering BM and Bos JL . (2001). Mol. Cell. Biol., 21, 8225–8235.

  • de Ruiter ND, Wolthuis RM, van Dam H, Burgering BM and Bos JL . (2000). Mol. Cell. Biol., 20, 8480–8488.

  • Feig LA . (2003). Trends Cell Biol., 13, 419–425.

  • Gire V and Wynford-Thomas D . (1998). Mol. Cell. Biol., 18, 1611–1621.

  • Gire V, Marshall C and Wynford-Thomas D . (2000). Oncogene, 19, 2269–2276.

  • Gire V, Marshall CJ and Wynford-Thomas D . (1999). Oncogene, 18, 4819–4832.

  • Goi T, Shipitsin M, Lu Z, Foster DA, Klinz SG and Feig LA . (2000). EMBO J., 19, 623–630.

  • Graham SM, Oldham SM, Martin CB, Drugan JK, Zohn IE, Campbell S and Der CJ . (1999). Oncogene, 18, 2107–2116.

  • Guo W, Tamanoi F and Novick P . (2001). Nat. Cell Biol., 3, 353–360.

  • Hamad NM, Elconin JH, Karnoub AE, Bai W, Rich JN, Abraham RT, Der CJ and Counter CM . (2002). Genes Dev., 16, 2045–2057.

  • Hannon GJ, Sun P, Carnero A, Xie LY, Maestro R, Conklin DS and Beach D . (1999). Science, 283, 1129–1130.

  • Henry DO, Moskalenko SA, Kaur KJ, Fu M, Pestell RG, Camonis JH and White MA . (2000). Mol. Cell. Biol., 20, 8084–8092.

  • Joneson T, White MA, Wigler MH and Bar-Sagi D . (1996). Science, 271, 810–812.

  • Jullien-Flores V, Dorseuil O, Romero F, Letourneur F, Saragosti S, Berger R, Tavitian A, Gacon G and Camonis JH . (1995). J. Biol. Chem., 270, 22473–22477.

  • Khosravi-Far R, White MA, Westwick JK, Solski PA, Chrzanowska-Wodnicka M, Van Aelst L, Wigler MH and Der CJ . (1996). Mol. Cell. Biol., 16, 3923–3933.

  • Ktistakis NT, Brown HA, Waters MG, Sternweis PC and Roth MG . (1996). J. Cell Biol., 134, 295–306.

  • Leevers SJ and Marshall CJ . (1992). EMBO J., 11, 569–574.

  • Lemoine NR, Mayall ES, Jones T, Sheer D, McDermid S, Kendall-Taylor P and Wynford-Thomas D . (1989a). Br. J. Cancer, 60, 897–903.

  • Lemoine NR, Mayall ES, Wyllie FS, Williams ED, Goyns M, Stringer B and Wynford-Thomas D . (1989b). Oncogene, 4, 159–164.

  • Lemoine NR, Staddon S, Bond J, Wyllie FS, Shaw JJ and Wynford-Thomas D . (1990). Oncogene, 5, 1833–1837.

  • Luo JQ, Liu X, Frankel P, Rotunda T, Ramos M, Flom J, Jiang H, Feig LA, Morris AJ, Kahn RA and Foster DA . (1998). Proc. Natl. Acad. Sci. USA, 95, 3632–3637.

  • Marshall CJ . (1996). Curr. Opin. Cell Biol., 8, 197–204.

  • Miller MJ, Prigent S, Kupperman E, Rioux L, Park SH, Feramisco JR, White MA, Rutkowski JL and Meinkoth JL . (1997). J. Biol. Chem., 272, 5600–5605.

  • Miller MJ, Rioux L, Prendergast GV, Cannon S, White MA and Meinkoth JL . (1998). Mol. Cell. Biol., 18, 3718–3726.

  • Morgenstern JP and Land H . (1990). Nucleic Acids Res., 18, 3587–3596.

  • Moskalenko S, Henry DO, Rosse C, Mirey G, Camonis JH and White MA . (2002). Nat. Cell Biol., 4, 66–72.

  • Moskalenko S, Tong C, Rosse C, Camonis J and White MA . (2003). J. Biol. Chem., 278, 51743–51748.

  • Ohta Y, Suzuki N, Nakamura S, Hartwig JH and Stossel TP . (1999). Proc. Natl. Acad. Sci. USA, 96, 2122–2128.

  • Oldham SM, Clark GJ, Gangarosa LM, Coffey Jr RJ and Der CJ . (1996). Proc. Natl. Acad. Sci. USA, 93, 6924–6928.

  • Roth MG, Bi K, Ktistakis NT and Yu S . (1999). Chem. Phys. Lipids, 98, 141–152.

  • Serrano M, Lin AW, McCurrach ME, Beach D and Lowe SW . (1997). Cell, 88, 593–602.

  • Shen Y, Xu L and Foster DA . (2001). Mol. Cell. Biol., 21, 595–602.

  • Suarez HG, du Villard JA, Severino M, Caillou B, Schlumberger M, Tubiana M, Parmentier C and Monier R . (1990). Oncogene, 5, 565–570.

  • Sugihara K, Asano S, Tanaka K, Iwamatsu A, Okawa K and Ohta Y . (2002). Nat. Cell Biol., 4, 73–78.

  • Urano T, Emkey R and Feig LA . (1996). EMBO J., 15, 810–816.

  • Venkateswarlu K, Oatey PB, Tavare JM and Cullen PJ . (1998). Curr. Biol., 8, 463–466.

  • White MA, Nicolette C, Minden A, Polverino A, Van Aelst L, Karin M and Wigler MH . (1995). Cell, 80, 533–541.

  • Williams DW, Williams ED and Wynford-Thomas D . (1988). Br. J. Cancer, 57, 535–539.

  • Wolthuis RM and Bos JL . (1999). Curr. Opin. Genet. Dev., 9, 112–117.

  • Wolthuis RM, de Ruiter ND, Cool RH and Bos JL . (1997). EMBO J., 16, 6748–6761.

  • Wolthuis RM, Franke B, van Triest M, Bauer B, Cool RH, Camonis JH, Akkerman JW and Bos JL . (1998). Mol. Cell. Biol., 18, 2486–2491.

  • Xu L, Frankel P, Jackson D, Rotunda T, Boshans RL, D'Souza-Schorey C and Foster DA . (2003). Mol. Cell. Biol., 23, 645–654.

Download references

Acknowledgements

This work was supported by grants from the CRUK. We thank Johannes Bos, Julian Downward and Alan Hall for supply of reagents and assistance with assays, and Michèle Haughton for thyroid cell preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Wynford-Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bounacer, A., McGregor, A., Skinner, J. et al. Mutant ras-induced proliferation of human thyroid epithelial cells requires three effector pathways. Oncogene 23, 7839–7845 (2004). https://doi.org/10.1038/sj.onc.1208085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208085

Keywords

Search

Quick links