Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Transcriptional activation of c-myc proto-oncogene by WT1 protein

Abstract

The Wilms’ tumor 1 gene (WT1) plays an essential role in urogenital development and malignancy. Through DNA binding, WT1 can either enhance or repress transcription depending on the context of the DNA-binding sites or the cell type in which it is expressed. WT1 is overexpressed in a variety of human cancers, including leukemia and breast cancer; in these diseases, the expression of WT1 is associated with a poor prognosis. To determine how WT1 affects c-myc expression in the context of breast cancer cells, we have examined the ability of both endogenous and exogenous WT1 proteins in breast cancer cells to bind to the c-myc promoter in vivo. Using c-myc-promoter-driven luciferase constructs, we found that different forms of WT1 could enhance the expression of the reporter. Unlike other studies where WT1 is reported to be a negative regulator of c-myc, we found that both the − and + KTS forms of WT1 could act to enhance c-myc expression, depending on the cell type. The WT1-binding site near the second major transcription start site of the c-myc promoter was confirmed to be involved in upregulation of human c-myc by WT1. Finally, we demonstrated that overexpression of WT1 induced a significant increase in the abundance of endogenous c-myc protein in breast cancer cells, consistent with the upregulation of c-myc transcription following WT1 induction. These observations strongly argue that in the case of breast cancer WT1 is functioning as an oncogene in part by stimulating the expression of c-myc.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 5
Figure 3
Figure 4

Similar content being viewed by others

References

  • Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, Palmiter RD and Brinster RL . (1985). Nature, 318, 533–538.

  • Algar EM, Khromykh T, Smith SI, Blackburn DM, Bryson GJ and Smith PJ . (1996). Oncogene, 12, 1005–1014.

  • Bruening W, Gros P, Sato T, Stanimir J, Nakamura Y, Housman D and Pelletier J . (1993). Cancer Invest., 11, 393–399.

  • Daksis JI, Lu RY, Facchini LM, Marhin WW and Penn LJ . (1994). Oncogene, 9, 3635–3645.

  • Ellisen LW, Carlesso N, Cheng T, Scadden DT and Haber DA . (2001). EMBO J., 20, 1897–1909.

  • Englert C, Maheswaran S, Garvin AJ, Kreidberg J and Haber DA . (1997). Cancer Res., 57, 1429–1434.

  • Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ and Hancock DC . (1992). Cell, 69, 119–128.

  • Haber DA and Buckler AJ . (1992). New Biol., 4, 97–106.

  • Haber DA, Buckler AJ, Glaser T, Call KM, Pelletier J, Sohn RL, Douglass EC and Housman DE . (1990). Cell, 61, 1257–1269.

  • Haber DA, Sohn RL, Buckler AJ, Pelletier J, Call KM and Housman DE . (1991). Proc. Natl. Acad. Sci. USA, 88, 9618–9622.

  • Heckman C, Mochon E, Arcinas M and Boxer LM . (1997). J. Biol. Chem., 272, 19609–19614.

  • Herzer U, Crocoll A, Barton D, Howells N and Englert C . (1999). Curr. Biol., 9, 837–840.

  • Hewitt SM, Hamada S, McDonnell TJ, Rauscher III FJ and Saunders GF . (1995). Cancer Res., 55, 5386–5389.

  • Kreidberg JA . (1996). Med. Pediatr. Oncol., 27, 445–452.

  • Lee SB and Haber DA . (2001). Exp. Cell Res., 264, 74–99.

  • Lee TH and Pelletier J . (2001). Physiol. Genomics, 7, 187–200.

  • Li RS, Law GL, Seifert RA, Romaniuk PJ and Morris DR . (1999). Exp. Cell Res., 247, 257–266.

  • Loeb DM, Evron E, Patel CB, Sharma PM, Niranjan B, Buluwela L, Weitzman SA, Korz D and Sukumar S . (2001). Cancer Res., 61, 921–925.

  • Loeb DM, Korz D, Katsnelson M, Burwell EA, Friedman AD and Sukumar S . (2002). J. Biol. Chem., 277, 19627–19632.

  • Madden SL, Cook DM and Rauscher III FJ . (1993). Oncogene, 8, 1713–1720.

  • Mayo MW, Wang CY, Drouin SS, Madrid LV, Marshall AF, Reed JC, Weissman BE and Baldwin AS . (1999). EMBO J., 18, 3990–4003.

  • Menssen HD, Bertelmann E, Bartelt S, Schmidt RA, Pecher G, Schramm K and Thiel E . (2000). J. Cancer Res. Clin. Oncol., 126, 226–232.

  • Miyoshi Y, Ando A, Egawa C, Taguchi T, Tamaki Y, Tamaki H, Sugiyama H and Noguchi S . (2002). Clin. Cancer Res., 8, 1167–1171.

  • Nakagama H, Heinrich G, Pelletier J and Housman DE . (1995). Mol. Cell. Biol., 15, 1489–1498.

  • Nisen PD, Zimmerman KA, Cotter SV, Gilbert F and Alt FW . (1986). Cancer Res., 46, 6217–6222.

  • Oh S, Song Y, Yim J and Kim TK . (1999). J. Biol. Chem., 274, 37473–37478.

  • Park S, Bernard A, Bove KE, Sens DA, Hazen-Martin DJ, Garvin AJ and Haber DA . (1993a). Nat. Genet., 5, 363–367.

  • Park S, Schalling M, Bernard A, Maheswaran S, Shipley GC, Roberts D, Fletcher J, Shipman R, Rheinwald J and Demetri G . (1993b). Nat. Genet., 4, 415–420.

  • Pelletier J, Bruening W, Li FP, Haber DA, Glaser T and Housman DE . (1991a). Nature, 353, 431–434.

  • Pelletier J, Schalling M, Buckler AJ, Rogers A, Haber DA and Housman D . (1991b). Genes Dev., 5, 1345–1356.

  • Pritchard-Jones K and Fleming S . (1991). Oncogene, 6, 2211–2220.

  • Rackley RR, Flenniken AM, Kuriyan NP, Kessler PM, Stoler MH and Williams BR . (1993). Cell Growth Differ., 4, 1023–1031.

  • Rauscher III FJ . (1993). Adv. Exp. Med. Biol., 348, 23–29.

  • Reddy JC and Licht JD . (1996). Biochim. Biophys. Acta, 1287, 1–28.

  • Scharnhorst V, van der Eb AJ and Jochemsen AG . (2001). Gene, 273, 141–161.

  • Silberstein GB, Van Horn K, Strickland P, Roberts Jr CT and Daniel CW . (1997). Proc. Natl. Acad. Sci. USA, 94, 8132–8137.

  • Svedberg H, Chylicki K, Baldetorp B, Rauscher III FJ and Gullberg U . (1998). Oncogene, 16, 925–932.

  • Svedberg H, Richter J and Gullberg U . (2001). Leukemia, 15, 1914–1922.

  • Taub R, Moulding C, Battey J, Murphy W, Vasicek T, Lenoir GM and Leder P . (1984). Cell, 36, 339–348.

  • Telerman A, Dodemont H, Degraef C, Galand P, Bauwens S, Van Oostveldt P and Amson RB . (1992). Oncogene, 7, 2545–2548.

  • Udtha M, Lee SJ, Alam R, Coombes K and Huff V . (2003). Oncogene, 22, 3821–3826.

  • Wang ZY, Qiu QQ, Enger KT and Deuel TF . (1993). Proc. Natl. Acad. Sci. USA, 90, 8896–8900.

Download references

Acknowledgements

We thank Dr Linda Penn for providing the luciferase plasmids and Dr Sam Benchimol for a critical review. This research was supported by the Ontario Cancer Institute, the National Cancer Institute of Canada Terry Fox New Initiative Program and the Canadian Breast Cancer Research Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D Minden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., San-Marina, S., Liu, J. et al. Transcriptional activation of c-myc proto-oncogene by WT1 protein. Oncogene 23, 6933–6941 (2004). https://doi.org/10.1038/sj.onc.1207609

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207609

Keywords

This article is cited by

Search

Quick links