Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Ablation of PARP-1 does not interfere with the repair of DNA double-strand breaks, but compromises the reactivation of stalled replication forks

Abstract

Poly(ADP-ribose) polymerase-1 (PARP-1) is an abundant DNA end-sensing and binding molecule. Inactivation of PARP-1 by chemicals and genetic mutations slows cell proliferation, increases sister chromatid exchange (SCE), micronuclei formation and chromosome instability, and shortens telomeres. Given its affinity to DNA breaks and temporal occupation on DNA strand break sites, PARP-1 is proposed to prevent inappropriate DNA recombination. We investigated the potential role of PARP-1 in repair of DNA double-strand breaks (DSBs) and stalled replication forks. PARP-1−/− embryonic stem cells and embryonic fibroblast cells exhibited normal repair of DNA DSBs by either homologous recombination (HR) or nonhomologous end-joining (NHEJ) pathways. Inactivation of PARP-1 did not interfere with gene-targeting efficiency in ES cells. However, PARP-1−/− cells were hypersensitive to the replication damage agent hydroxyurea (HU)-induced cell death and exhibited enhanced SCE formation. Ablation of PARP-1 delayed reactivation of stalled replication forks imposed by HU and re-entry into the G2-M phase after HU release. These data indicate that PARP-1 is dispensable in HR induced by DSBs, but is involved in the repair and reactivation of stalled replication forks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ariumi Y, Masutani M, Copeland TD, Mimori T, Sugimura T, Shimotohno K, Ueda K, Hatanaka M and Noda M . (1999). Oncogene, 18, 4616–4625.

  • Boulton SJ, Gartner A, Reboul J, Vaglio P, Dyson N, Hill DE and Vidal M . (2002). Science, 295, 127–131.

  • Burkle A . (2001). BioEssays, 23, 795–806.

  • Cortes F, Pinero J and Ortiz T . (1993). Mutat. Res., 303, 71–76.

  • Cox MM . (2001). Annu. Rev. Genet., 35, 53–82.

  • Cox MM . (2002). Mutat. Res., 10, 107–120.

  • D'Amours D, Desnoyers S, D'Silva I and Poirier GG . (1999). Biochem. J., 342, 249–268.

  • Dronkert ML, Beverloo HB, Johnson RD, Hoeijmakers JH, Jasin M and Kanaar R . (2000). Mol. Cell. Biol., 20, 3147–3156.

  • Galande S and Kohwi-Shigematsu T . (1999). J. Biol. Chem., 274, 20521–20528.

  • Henrie MS, Kurimasa A, Burma S, Menissier-de Murcia J, de Murcia G, Li GC and Chen DJ . (2003). DNA Repair, 2, 151–158.

  • Hoeijmakers JH . (2001). Nature, 411, 366–374.

  • Ikushima T . (1990). Chromosoma, 99, 360–364.

  • Jackson SP . (2002). Carcinogenesis, 23, 687–696.

  • Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H, Ellenberger T and Sung P . (2003). Nature, 423, 305–309.

  • Liang F, Han M, Romanienko PJ and Jasin M . (1998). Proc. Natl. Acad. Sci. USA, 95, 5172–5177.

  • Lindahl T, Satoh MS, Poirier GG and Klungland A . (1995). Trends Biochem. Sci., 20, 405–411.

  • Lundin C, Erixon K, Arnaudeau C, Schultz N, Jenssen D, Meuth M and Helleday T . (2002). Mol. Cell. Biol., 22, 5869–5878.

  • Masson JY and West SC . (2001). Trends Biochem. Sci., 26, 131–136.

  • McGlynn P and Lloyd RG . (2002). Nat. Rev. Mol. Cell. Biol., 3, 859–870.

  • Ménissier-de Murcia J, Mark M, Wendling O, Wynshaw-Boris A and de Murcia G . (2001). Mol. Cell. Biol., 21, 1828–1832.

  • Ménissier-de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P and de Murcia G . (1997). Proc. Natl. Acad. Sci. USA, 94, 7303–7307.

  • Morrison C, Smith GC, Stingl L, Jackson SP, Wagner EF and Wang Z-Q . (1997). Nat. Genet., 17, 479–482.

  • Nyberg KA, Michelson RJ, Putnam CW and Weinert TA . (2002). Annu. Rev. Genet., 36, 617–656.

  • Pierce AJ, Hu P, Han M, Ellis N and Jasin M . (2001). Genes Dev., 15, 3237–3242.

  • Pierce AJ, Johnson RD, Thompson LH and Jasin M . (1999). Genes Dev., 13, 2633–2638.

  • Rainaldi G, Sessa MR and Mariani T . (1984). Chromosoma, 90, 46–49.

  • Richardson C, Moynahan ME and Jasin M . (1998). Genes Dev., 12, 3831–3842.

  • Robertson EJ . (1987). Teratocarcinomas and Embryonic Stem Cells: A Practical Approach. Oxford IRL Press: Oxford, pp. 71–112.

    Google Scholar 

  • Saintigny Y, Delacote F, Vares G, Petitot F, Lambert S, Averbeck D and Lopez BS . (2001). EMBO J., 20, 3861–3870.

  • Schultz N, Lopez E, Saleh-Gohari N and Helleday T . (2003). Nucleic Acids Res., 31, 4959–4964.

  • Simbulan-Rosenthal CM, Rosenthal DS, Hilz H, Hickey R, Malkas L, Applegren N, Wu Y, Bers G and Smulson ME . (1996). Biochemistry, 35, 11622–11633.

  • Sogo JM, Lopes M and Foiani M . (2002). Science, 297, 599–602.

  • Sonoda E, Sasaki MS, Morrison C, Yamaguchi-Iwai Y, Takata M and Takeda S . (1999). Mol. Cell. Biol., 19, 5166–5169.

  • Tarsounas M, Davies D and West SC . (2003). Oncogene, 22, 1115–1123.

  • Tashiro S, Walter J, Shinohara A, Kamada N and Cremer T . (2000). J. Cell Biol., 150, 283–291.

  • Tauchi H, Kobayashi J, Morishima K, Van Gent DC, Shiraishi T, Verkaik NS, Van Heems D, Ito E, Nakamura A, Sonoda E, Takata M, Takeda S, Matsuura S and Komatsu K . (2002). Nature, 420, 93–99.

  • Tong W-M, Cortes U, Hande M-P, Ohgaki H, Cavalli LR, Lansdorp PM, Haddad BR and Wang Z-Q . (2002). Cancer Res., 62, 6990–6996.

  • Tong W-M, Cortes U and Wang Z-Q . (2001a). Biochim. Biophys. Acta-Rev. Cancer, 1552, 27–37.

  • Tong W-M, Galendo D and Wang Z-Q . (2000). Cold Spring Harb. Symp. Quant. Biol., 65, 583–591.

  • Tong W-M, Hande MP, Lansdorp PM and Wang Z-Q . (2001b). Mol. Cell. Biol., 21, 4046–4054.

  • Tong W-M, Ohgaki H, Huang H, Granier C, Kleihues P and Wang Z-Q . (2003). Am. J. Pathol., 162, 343–352.

  • Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E and Fabre F . (2003). Nature, 423, 309–312.

  • Wang Z-Q, Auer B, Stingl L, Berghammer H, Haidacher D, Schweiger M and Wagner EF . (1995). Genes Dev., 9, 509–520.

  • Wang Z-Q, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K and Wagner EF . (1997). Genes Dev., 11, 2347–2358.

  • Wesierska-Gadek J, Wang Z-Q and Schmid G . (1999). Cancer Res., 59, 28–34.

Download references

Acknowledgements

We thank Dr S West for the Rad51 antibody. We also thank Ms Jocelyne Michelon for technical assistance and Drs Z Herceg, W-M Tong and E Van Dyck for critical reading of the manuscript. Y-G Yang and S Patnaik are supported by a postdoctoral fellowship from the International Agency for Research on Cancer (IARC). This study is supported by the Association pour la Recherche sur le Cancer (ARC), France and the Association for International Cancer Research (AICR), UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Qi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, YG., Cortes, U., Patnaik, S. et al. Ablation of PARP-1 does not interfere with the repair of DNA double-strand breaks, but compromises the reactivation of stalled replication forks. Oncogene 23, 3872–3882 (2004). https://doi.org/10.1038/sj.onc.1207491

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207491

Keywords

This article is cited by

Search

Quick links