Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Report
  • Published:

Chimaerism and erythroid marker expression after microinjection of human acute myeloid leukaemia cells into murine blastocysts

Abstract

It has been suggested that the embryonic microenvironment can control the survival and the transformed phenotype of tumour cells. Here, we addressed the hypothesis that the murine embryonic microenvironment can induce the differentiation of human tumour cells. To examine such interactions, we injected human leukaemic cells into preimplantation murine blastocysts at embryonic day 3.5 of gestation (E3.5). Microinjection of human KG-1 myeloid leukaemia cells and primary human acute myeloid leukaemia (AML) cells led to the generation of chimaeric embryos and adults. We observed that in E12.5 murine embryos, KG-1 cells were preferentially detected in yolk sac and peripheral blood, while primary AML cells mainly seeded the aorta gonad mesonephros region of chimaeric embryos. Analysis of the donor contribution in 15 different adult tissues showed that progeny of primary AML cells seeded to various haematopoietic and nonhaematopoietic tissues. Chimaeric embryos and adults showed no apparent tumour formation. Furthermore, analysis of chimaeric E12.5 embryos revealed that the progeny of human KG-1 cells activated erythroid-specific human globin and glycophorin A expression. In summary, our data indicate that human AML cells activate markers of erythroid differentiation after injection into early murine embryos.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alcalay M, Orleth A, Sebastiani C, Meani N, Chiaradonna F, Casciari C, Sciurpi MT, Gelmetti V, Riganelli D, Minucci S, Fagioli M and Pelicci PG . (2001). Oncogene, 20, 5680–5694.

  • Barker JE . (1970). Nature, 228, 1305–1306.

  • Bonnet D and Dick JE . (1997). Nat Med, 3, 730–737.

  • Brinster RL . (1974). J Exp Med, 140, 1049–1056.

  • Bungert J, Dave U, Lim K-C, Lieuw KH, Shavit JA, Liu Q and Engel JD . (1995). Gen Dev, 9, 3083–3096.

  • Drach J, Lopez-Berestein G, McQueen T, Andreeff M and Mehta K . (1993). Cancer Res, 53, 2100–2104.

  • Geiger H, Sick S, Bonifer C and Müller AM . (1998). Cell, 93, 1055–1065.

  • Gerschenson M, Graves K, Carson SD, Wells RS and Pierce GB . (1986). Proc Natl Acad Sci USA, 83, 7307–7310.

  • Gootwine E, Webb CG and Sachs L . (1982). Nature, 299, 63–65.

  • Harder F, Henschler R, Junghahn I, Lamers MC and Müller AM . (2002). Blood, 99, 719–721.

  • Huettner CS, Zhang P, Van Etten RA and Tenen DG . (2000). Nat Genet, 24, 57–60.

  • Illmensee K and Mintz B . (1976). Proc Natl Acad Sci USA, 73, 549–553.

  • Junghahn I, Göttig S, Bug G, Schneider O, Fichtner I and Henschler R . (2001). Blood, 98, Abstract 4153..

  • Kirchhof N, Harder F, Petrovic S, Kreutzfeldt S, Schmittwolf C, Dürr M, Mühl B, Merkel A and Müller AM . (2002). Cells Tissues Organs, 171, 77–89.

  • Koeffler HP, Bar-Eli M and Territo MC . (1981). Cancer Res, 41, 919–926.

  • Koeffler HP and Golde DW . (1978). Science, 200, 1153–1154.

  • Li L, Connelly MC, Wetmore C, Curran T and Morgan JI . (2003). Cancer Res, 63, 2733–2736.

  • Lichtenberger C, Zakeri S, Baier K, Willheim M, Holub M and Reinisch W . (1999). J Immunol Methods, 227, 75–84.

  • Look AL . (1997). Science, 278, 1059–1064.

  • Medvinsky AL, Samoylina NL, Müller AM and Dzierzak EA . (1993). Nature, 364, 64–67.

  • Mintz B and Illmensee K . (1975a). Proc Natl Acad Sci U S A, 72, 3585–3589.

  • Mintz B, Illmensee K and Gearhart JD . (1975b). In: Sherman MI Solter D. eds. Teratomas and Differentiation. New York, Academic Press, 310, 59–82.

    Google Scholar 

  • Müller AM, Medvinsky A, Strouboulis J, Grosveld F and Dzierzak E . (1994). Immunity, 1, 291–301.

  • Outram S, Amess JA and Horton MA . (1988). Leuk Res, 12, 651–657.

  • Papaioannou VE, McBurney MW, Gardner RL and Evans MJ . (1975). Nature, 258, 70–73.

  • Pierce GB, Lewis SH, Miller GJ, Moritz E and Miller P . (1979). Proc Natl Acad Sci U S A, 76, 6649–6651.

  • Pierce GB, Pantazis CG, Caldwell JE and Wells RS . (1982). Cancer Res, 42, 1082–1087.

  • Podesta AH, Mullins J, Pierce GB and Wells RS . (1984). Proc Natl Acad Sci USA, 81, 7608–7611.

  • Rabbitts TH . (1994). Nature, 372, 143–149.

  • Robinson J, Sieff C, Delia D, Edwards PA and Greaves M . (1981). Nature, 289, 68–71.

  • Rossant J and Papaioannou VE . (1985). Experimental Cell Research, 156, 213–220.

  • Sachs L . (1980). J Natl Cancer Inst, 65, 675–679.

  • Saito H, Bourinbaiar A, Ginsburg M, Minato K, Ceresi E, Yamada K, Machover D, Breard J and Mathe G . (1985). Blood, 66, 1233–1240.

  • Sawyers CL . (2002). Curr Opin Genet Dev, 12, 111–115.

  • Stevens LC . (1967). Adv Morphog, 6, 1–31.

  • Tavian M, Coulombel L, Luton D, Clemente H, Dieterlen-Lievre F and Peault B . (1996). Blood, 87, 67–72.

  • Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE and Scott EW . (2002). Nature, 416, 542–545.

  • Terstappen LW, Safford M, Unterhalt M, Konemann S, Zurlutter K, Piechotka K, Drescher M, Aul C, Buchner T Hiddemann W and Wörmann B . (1992). Leukemia, 6, 993–1000.

  • Vassilopoulos G, Wang PR and Russell DW . (2003). Nature, 422, 901–904.

  • Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Olson S and Grompe M . (2003). Nature, 422, 897–901.

  • Warburton PE, Greig GM, Haaf T and Willard HF . (1991). Genomics, 11, 324–333.

  • Waters BK and Rossant J . (1986). J Embryol exp Morph, 98, 99–110.

  • Ying QL, Nichols J, Evans EP and Smith AG . (2002). Nature, 416, 545–548.

Download references

Acknowledgements

Special thanks go to Rolf Kemler for drawing our attention to the regulatory effect of the embryonic microenvironment on tumour cells and to Ilse Junghahn for KG-1 and EOL cells. We thank Randall Cassada, Erin Drew and the members of the Müller lab for comments and critical reading of the manuscript. This work was supported in part by grants from the Würzburger Universitätsbund and the Wilhelm Sander-Stiftung to AMM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht M Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dürr, M., Harder, F., Merkel, A. et al. Chimaerism and erythroid marker expression after microinjection of human acute myeloid leukaemia cells into murine blastocysts. Oncogene 22, 9185–9191 (2003). https://doi.org/10.1038/sj.onc.1207134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207134

Keywords

This article is cited by

Search

Quick links