Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Evidence for radiosensitizing by gliotoxin in HL-60 cells: implications for a role of NF-κB independent mechanisms

Abstract

Radioresistance markedly impairs the efficacy of tumor radiotherapy and may involve antiapoptotic signal transduction pathways that prevent radiation-induced cell death. A common cellular response to genotoxic stress induced by radiation is the activation of the nuclear factor kappa B (NF-κB). NF-κB activation in turn can lead to an inhibition of radiation-induced apoptotic cell death. Thus, inhibition of NF-κB activation is commonly regarded as an important strategy to abolish radioresistance. Among other compounds, the fungal metabolite gliotoxin (GT) has been reported to be a highly selective inhibitor of NF-κB activation. Indeed, low doses of GT were sufficient to significantly enhance radiation-induced apoptosis in HL-60 cells. However, this effect turned out to be largely independent of NF-κB activation since radiation of HL-60 cells with clinically relevant doses of radiation induced only a marginal increase in NF-κB activity, and selective inhibition of NF-κB by SN50 did not result in a marked enhancement of GT-induced apoptosis. GT induced activation of JNKs, cytochrome c release from the mitochondria and potently stimulated the caspase cascade inducing cleavage of caspases −9, −8, −7 and −3. Furthermore, cleavage of the antiapoptotic protein X-linked IAP and downregulation of the G2/M-specific IAP-family member survivin were observed during GT-induced apoptosis. Finally, the radiation-induced G2/M arrest was markedly reduced in GT-treated cells most likely due to the rapid induction of apoptosis. Our data demonstrate that various other pathways apart from the NF-κB signaling complex can sensitize tumor cells to radiation and propose a novel mechanism for radiosensitization by GT, the interference with the G2/M checkpoint that is important for repair of radiation-induced DNA damage in p53-deficient tumor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

AEBSF:

4-(2-aminoethyl)benzenesulfonyl fluoride

CHAPS:

3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid

CHX:

cycloheximide

CLAC:

clasto-lactacystin

COX:

cytochrome c oxidase

Cyt c:

cytochrome c

DTT:

dithiothreitol

EMSA:

electrophoretic mobility shift assay

FITL:

fluorescein isothiocyanate

GT:

gliotoxin

IκBα:

inhibitor of nuclear factor κα

IR:

ionizing radiation

JNK:

c-Jun NH2-terminal kinase

MOPS:

morpholinepropanesulfonic acid

NF-κB:

nuclear factor κB

PAGE:

polyacrylamide gel electrophoresis

PI:

propidium iodide

z-VAD-fmk:

benzyloxy-carbonyl-Val-Ala-Asp-fluoromethylketone

References

  • Aldridge DR and Radford IR . (1998). Cancer Res., 58, 2817–2824.

  • Baldwin Jr AS . (1996). Annu. Rev. Immunol., 14, 649–683.

  • Bossy-Wetzel E, Bakiri L and Yaniv M . (1997). EMBO J., 16, 1695–1709.

  • Bratton DL, Fadok VA, Richter DA, Kailey JM, Frash SC, Nakamura T and Henson PM . (1999). J. Biol. Chem., 274, 28113–28120.

  • Bristow RG, Benchimol S and Hill RP . (1996). Radiother. Oncol., 40, 197–223.

  • Chaudhary PM, Eby MT, Jasmin A and Hood L . (1999). J. Biol. Chem., 274, 19211–19219.

  • Chen YR, Meyer CF and Tan TH . (1996). J. Biol. Chem., 271, 631–634.

  • Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS and Reed JC . (1999). EMBO J., 18, 5242–5251.

  • Deveraux QL, Takahashi R, Salvesen GS and Reed JC . (1997). Nature, 388, 300–304.

  • Dignam JD, Lebovitz RM and Roeder RG . (1983). Nucleic Acids Res., 11, 1475–1489.

  • Duckett CS, Li F, Wang Y, Tomaselli KJ, Thompson CB and Armstrong RC . (1998). Mol. Cell. Biol., 18, 608–615.

  • Eichner RD, Waring P, Geue AM, Braithwaite AW and Müllbacher A . (1988). J. Biol. Chem., 263, 3772–3777.

  • Elsharkawy AM, Wright MC, Hay RT, Arthur MJP, Hughes T, Bahr MJ, Derek K and Mann DA . (1999). Hepatology, 30, 761–769.

  • Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ and Schreiber SL . (1995). Science, 268, 726–731.

  • Han Z, Chatterjee D, He D, Early J, Pantazis P, Wyche JH and Hendrickson EA . (1995). Mol. Cell. Biol., 15, 5849–5857.

  • Hay BA, Wassarman DA and Rubin GM . (1995). Cell, 83, 1253–1262.

  • Hazzalin CA, Panse RL, Cano E and Mahadevan LC . (1998). Mol. Cell. Biol, 18, 1844–1854.

  • Hida A, Kawakami A, Nakashima T, Yamasaki S, Sakai H, Urayama S, Ida H, Nakamura H, Migita K, Kawabe Y and Eguchi K . (2000). Immunology, 99, 553–560.

  • Holcik M, Yeh C, Korneluk RG and Chow T . (2000). Oncogene, 19, 4174–4177.

  • Huang Y, Park YC, Rich RL, Segal D, Myszka DG and Wu H . (2001). Cell, 104, 781–790.

  • Kawabe S, Nishikawa T, Munshi A, Roth JA, Chada S and Meyn RE . (2002). Mol. Ther., 6, 637–644.

  • Kerr JF . (1972). J. Pathol., 107, 217–219.

  • Kroll M, Arenzana-Seisdedos F, Bachelerie F, Thomas D, Friguet B and Conconi M . (1999). Chem. Biol., 6, 689–698.

  • Lee JM and Bernstein A . (1993). Proc. Natl. Acad. Sci. USA, 90, 5742–5746.

  • Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC and Altieri DC . (1998). Nature, 396, 580–584.

  • Lin YZ, Yao SY, Veach RA, Torgerson TR and Hawiger J . (1995). J. Biol. Chem., 270, 14255–14258.

  • Los M, Wesselborg S and Schulze-Osthoff K . (1999). Immunity, 10, 629–639.

  • Lowe SW, Schmitt EM, Smith SW, Osborne BA and Jacks T . (1993). Nature, 362, 847–849.

  • Maundrell K, Antonsson B, Magnenat E, Camps M, Muda M, Chabert C, Gillieron C, Boschert U, Vial-Knecht E, Martinou JC and Arkinstall S . (1997). J. Biol. Chem., 272, 25238–25242.

  • Naujokat C and Hoffmann S . (2002). Lab. Invest., 82, 965–980.

  • Pahl HL, Krauß B, Schulze-Osthoff K, Decker T, Traenckner EBM, Vogt M, Myers C, Parks T, Warring P, Mühlbacher A, Czernilofsky AP and Baeuerle PA . (1996). J. Exp. Med., 183, 1829–1840.

  • Pajonk F and McBride WH . (2001). Radiother. Oncol., 59, 203–212.

  • Pluempe J, Malek NP, Bock CT, Rakemann T, Manns MP and Trautwein CT . (2000). Am. J. Physiol. Gastrointest. Liver Physiol., 278, G173–G183.

  • Powell SN, DeFrank J, Connell P, Eogan M, Preffer F, Dombkowski D, Tang W and Friend S . (1995). Cancer Res., 55, 1643–1648.

  • Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D and Goldberg AL . (1994). Cell, 78, 761–777.

  • Russell KJ, Wiens LW, Demers GW, Galloway DA, Plon SE and Groudine M . (1995). Cancer Res., 55, 1639–1642.

  • Sasaki T, Kishi M, Saito M, Tanaka T, Higuchi N, Kominam E, Katunuma N and Murachi T . (1990). J. Enzyme Inhib., 3, 195–201.

  • Seufferlein T, Van Lint J, Liptay S, Adler G and Schmid RM . (1999). Gastroenterology, 116, 141–1452.

  • Shao R, Karunagaran D, Zhou BP, Li K, Lo SS, Deng J, Chiao P and Hung MC . (1997). J. Biol. Chem., 272, 32739–32742.

  • Steel GG and Peckham MJ . (1979). Int. J. Radiat. Oncol. Biol. Phys., 5, 85–91.

  • Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA and Davis RJ . (2000). Science, 288, 870–874.

  • Wang CY, Mayo MW, Korneluk RG, Goeddel DV and Baldwin Jr AS . (1998). Science, 281, 1680–1683.

  • Waring P . (1990). J. Biol. Chem., 265, 14476–14480.

  • Waring P and Beaver J . (1996). Gen. Pharmacol., 27, 1311–1316.

  • Waring P, Khan T and Sjaarda A . (1997). J. Biol. Chem., 272, 17929–17936.

  • Wilson RE, Taylor SL, Atherton GT, Johnston D, Waters CM and Norton JD . (1993). Oncogene, 8, 3229–3237.

  • Wolf D and Rotter V . (1985). Proc. Natl. Acad. Sci. USA, 82, 790–794.

  • Yamagishi N, Miyakoshi J and Takebe H . (1997). Int. J. Radiat. Biol., 72, 157–162.

  • Yuan Z, Feldman RI, Sun M, Olashaw NE, Coppola D, Sussman GE, Shelly SA, Nicosia SV and Cheng JQ . (2002). J. Biol. Chem., 277, 29973–29982.

  • Zanke BW, Boudreau K, Rubie E, Winnett E, Tibbles LA, Zon L, Kyriakis J, Liu FF and Woodgett JR . (1996). Curr. Biol., 6, 606–613.

Download references

Acknowledgements

The skilful technical assistance of Stephanie Högner and Sabine Schirmer is gratefully acknowledged. The constructive advise of Dr Luitpold Distel and Dr Dieter Kaufmann-Bühler is greatly appreciated. The work was partially supported by the DFG-Grant Lo823/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Baust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baust, H., Schoke, A., Brey, A. et al. Evidence for radiosensitizing by gliotoxin in HL-60 cells: implications for a role of NF-κB independent mechanisms. Oncogene 22, 8786–8796 (2003). https://doi.org/10.1038/sj.onc.1206969

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206969

Keywords

This article is cited by

Search

Quick links