Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation

Abstract

The transcription factor GATA-1 plays a significant role in erythroid differentiation and association with CBP stimulates its activity by acetylation. It is possible that histone deacetylases (HDACs) repress the activity of GATA-1. In the present study, we investigated whether class I and class II HDACs interact with GATA-1 to regulate its function and indeed, GATA-1 is directly associated with HDAC3, HDAC4 and HDAC5. The expression profiling and our previous observation that GATA-2 interacts with members of the HDAC family prompted us to investigate further the biological relevance of the interaction between GATA-1 and HDAC5. Coexpression of HDAC5 suppressed the transcriptional potential of GATA-1. Our results demonstrated that GATA-1 and HDAC5 colocalized to the nucleus of murine erythroleukemia (MEL) cells. Furthermore, a portion of HDAC5 moved to the cytoplasm concomitant with MEL cell erythroid differentiation, which was induced by treatment with N,N′-hexamethylenebisacetamide. These observations support the suggestion that control of the HDAC5 nucleocytoplasmic distribution might be associated with MEL cell differentiation, possibly through regulated GATA-1 transactivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bertos NR, Wang AH and Yang XJ . (2001). Biochem. Cell Biol., 79, 243–252.

  • Blobel GA, Nakajima T, Eckner R, Montminy M and Orkin SH . (1998). Proc. Natl. Acad. Sci. USA, 95, 2061–2066.

  • Boyes J, Byfield P, Nakatani Y and Ogryzko V . (1998). Nature, 396, 594–598.

  • Briegel K, Lim KC, Plank C, Beug H, Engel JD and Zenke M . (1993). Genes Dev., 7, 1097–1109.

  • Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY and Allis CD . (1996). Cell, 84, 843–851.

  • Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y and Evans RM . (1997). Cell, 90, 569–580.

  • Conscience JF, Miller RA, Henry J and Ruddle FH . (1977). Exp. Cell Res., 105, 401–412.

  • Cress WD and Seto E . (2000). J. Cell Physiol., 184, 1–16.

  • Crispino JD, Lodish MB, MacKay JP and Orkin SH . (1999). Mol. Cell, 3, 219–228.

  • Crotta S, Nicolis S, Ronchi A, Ottolenghi S, Ruzzi L, Shimada Y, Migliaccio AR and Migliaccio G . (1990). Nucleic Acids Res., 18, 6863–6869.

  • Emiliani S, Fischle W, Van Lint C, Al-Abed Y and Verdin E . (1998). Proc. Natl. Acad. Sci. USA, 95, 2795–2800.

  • Evans T and Felsenfeld G . (1989). Cell, 58, 877–885.

  • Fujiwara Y, Browne CP, Cunniff K, Goff SC and Orkin SH . (1996). Proc. Natl. Acad. Sci. USA, 93, 12355–12358.

  • Gao L, Cueto MA, Asselbergs F and Atadja P . (2002). J. Biol. Chem., 277, 25748–25755.

  • George KM, Leonard MW, Roth ME, Lieuw KH, Kioussis D, Grosveld F and Engel JD . (1994). Development, 120, 2673–2686.

  • Grozinger CM, Hassig CA and Schreiber SL . (1999). Proc. Natl. Acad. Sci. USA, 96, 4868–4873.

  • Grozinger CM and Schreiber SL . (2000). Proc. Natl. Acad. Sci. USA, 97, 7835–7840.

  • Heberlein C, Fischer KD, Stoffel M, Nowock J, Ford A, Tessmer U and Stocking C . (1992). Mol. Cell. Biol., 12, 1815–1826.

  • Hong L, Schroth GP, Matthews HR, Yau P and Bradbury EM . (1993). J. Biol. Chem., 268, 305–314.

  • Hu E, Chen Z, Fredrickson T, Zhu Y, Kirkpatrick R, Zhang GF, Johanson K, Sung CM, Liu R and Winkler J . (2000). J. Biol. Chem., 275, 15254–15264.

  • Ikonomi P, Rivera CE, Riordan M, Washington G, Schechter AN and Noguchi CT . (2000). Exp. Hematol., 28, 1423–1431.

  • Knoepfler PS and Eisenman RN . (1999). Cell, 99, 447–450.

  • Laverriere AC, MacNeill C, Mueller C, Poelmann RE, Burch JB and Evans T . (1994). J. Biol. Chem., 269, 23177–23184.

  • Lee DY, Hayes JJ, Pruss D and Wolffe AP . (1993). Cell, 72, 73–84.

  • Leonard MW, Lim KC and Engel JD . (1993). Development, 119, 519–531.

  • McKinsey TA, Zhang CL, Lu J and Olson EN . (2000). Nature, 408, 106–111.

  • Mizzen CA, Yang XJ, Kokubo T, Brownell JE, Bannister AJ, Owen-Hughes T, Workman J, Wang L, Berger SL, Kouzarides T, Nakatani Y and Allis CD . (1996). Cell, 87, 1261–1270.

  • Ng HH and Bird A . (2000). Trends Biochem. Sci., 25, 121–126 3_00001551 3_00001551.

  • Norton VG, Imai BS, Yau P and Bradbury EM . (1989). Cell, 57, 449–457.

  • Ogryzko VV, Schiltz RL, Russanova V, Howard BH and Nakatani Y . (1996). Cell, 87, 953–959.

  • Orkin SH . (1992). Blood, 80, 575–581.

  • Orkin SH, Harosi FI and Leder P . (1975). Proc. Natl. Acad. Sci. USA, 72, 98–102.

  • Ozawa Y, Towatari M, Tsuzuki S, Hayakawa F, Maeda T, Miyata Y, Tanimoto M and Saito H . (2001). Blood, 98, 2116–2123.

  • Pazin MJ and Kadonaga JT . (1997). Cell, 89, 325–328.

  • Pevny L, Simon MC, Robertson E, Klein WH, Tsai SF, D’Agati V, Orkin SH and Costantini F . (1991). Nature, 349, 257–260.

  • Shore D . (2000). Proc. Natl. Acad. Sci. USA, 97, 14030–14032.

  • Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ and O'Malley BW . (1997). Nature, 389, 194–198.

  • Takahashi T, Suwabe N, Dai P, Yamamoto M, Ishii S and Nakano T . (2000). Oncogene, 19, 134–140.

  • Taunton J, Hassig CA and Schreiber SL . (1996). Science, 272, 408–411.

  • Tong JK, Hassig CA, Schnitzler GR, Kingston RE and Schreiber SL . (1998). Nature, 395, 917–921.

  • Towatari M, May GE, Marais R, Perkins GR, Marshall CJ, Cowley S and Enver T . (1995). J. Biol. Chem., 270, 4101–4107.

  • Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, Alt FW and Orkin SH . (1994). Nature, 371, 221–226.

  • Tsai FY and Orkin SH . (1997). Blood, 89, 3636–3643.

  • Tsang AP, Visvader JE, Turner CA, Fujiwara Y, Yu C, Weiss MJ, Crossley M and Orkin SH . (1997). Cell, 90, 109–119.

  • Tsuzuki S, Towatari M, Saito H and Enver T . (2000). Mol. Cell. Biol., 20, 6276–6286.

  • Vettese-Dadey M, Grant PA, Hebbes TR, Crane-Robinson C, Allis CD and Workman JL . (1996). EMBO J., 15, 2508–2518.

  • Wade PA . (2001). Hum. Mol. Genet., 10, 693–698.

  • Wang AH, Bertos NR, Vezmar M, Pelletier N, Crosato M, Heng HH, Th'ng J, Han J and Yang XJ . (1999). Mol. Cell Biol., 19, 7816–7827.

  • Weiss MJ, Keller G and Orkin SH . (1994). Genes Dev., 8, 1184–1197.

  • Weiss MJ and Orkin SH . (1995). Exp. Hematol., 23, 99–107.

  • Weiss MJ, Yu C and Orkin SH . (1997). Mol. Cell. Biol., 17, 1642–1651.

  • Yamamoto M, Ko LJ, Leonard MW, Beug H, Orkin SH and Engel JD . (1990). Genes Dev., 4, 1650–1662.

  • Yamamoto T and Horikoshi M . (1997). J. Biol. Chem., 272, 30595–30598.

  • Yang WM, Inouye C, Zeng Y, Bearss D and Seto E . (1996a). Proc. Natl. Acad. Sci. USA, 93, 12845–12850.

  • Yang WM, Yao YL, Sun JM, Davie JR and Seto E . (1997). J. Biol. Chem., 272, 28001–28007.

  • Yang XJ, Ogryzko VV, Nishikawa J, Howard BH and Nakatani Y . (1996b). Nature, 382, 319–324.

  • Yomogida K, Ohtani H, Harigae H, Ito E, Nishimune Y, Engel JD and Yamamoto M . (1994). Development, 120, 1759–1766.

  • Zhang P, Zhang X, Iwama A, Yu C, Smith KA, Mueller BU, Narravula S, Torbett BE, Orkin SH and Tenen DG . (2000). Blood, 96, 2641–2648.

  • Zhang Y, LeRoy G, Seelig HP, Lane WS and Reinberg D . (1998). Cell, 95, 279–289.

Download references

Acknowledgements

We are grateful to S Suzuki, M Isomura, and C Wakamatsu for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Towatari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watamoto, K., Towatari, M., Ozawa, Y. et al. Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene 22, 9176–9184 (2003). https://doi.org/10.1038/sj.onc.1206902

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206902

Keywords

This article is cited by

Search

Quick links