Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

ATM's leucine-rich domain and adjacent sequences are essential for ATM to regulate the DNA damage response

Abstract

The ATM protein kinase regulates the DNA damage response by phosphorylating proteins involved in cell cycle checkpoints and DNA repair. We report here on the function of the predicted leucine zipper (LZ) motif, and sequences adjacent to this, in regulating ATM activity. The predicted LZ sequence was deleted from ATM, generating ATMΔLZ, and expressed in an ATM-negative AT cell line. ATM increased cell survival following exposure to ionizing radiation, whereas expression of ATMΔLZ failed to increase cell survival. ATMΔLZ retained in vitro kinase activity, but was unable to phosphorylate p53 in vivo. Leucine zippers mediate homo- and heterodimerization of proteins. However, the predicted LZ of ATM did not mediate the formation of ATM dimers. We examined if the predicted LZ of ATM was a dominant-negative inhibitor of ATM function in SW480 cells. Expression of amino acids 769–1436 of ATM, including the predicted LZ, sensitized SW480 cells to ionizing radiation, but did not inhibit ATM's kinase activity or its ability to phosphorylate Brca1. Further, this dominant-negative activity was not dependent on the predicted LZ domain. The central region of the ATM protein therefore contains multiple sequences which regulate cell survival following DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y and Ziv Y . (1998). Science, 281, 1674–1677.

  • Beamish H, Kedar P, Kaneko H, Chen P, Fukao T, Peng C, Beresten S, Gueven N, Purdie D, Lees-Miller S, Ellis N, Kondo N and Lavin MF . (2002). J. Biol. Chem., 277, 30515–30523.

  • Beamish H, Williams R, Chen P and Lavin MF . (1996). J. Biol. Chem., 271, 20486–20493.

  • Blasina A, de Weyer IV, Laus MC, Luyten WH, Parker AE and McGowan CH . (1999). Curr. Biol., 9, 1–10.

  • Bosotti R, Isacchi A and Sonnhammer EL . (2000). Trends Biochem. Sci., 25, 225–227.

  • Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB and Siliciano JD . (1998). Science, 281, 1677–1679.

  • Chenevix-Trench G, Spurdle AB, Gatei M, Kelly H, Marsh A, Chen X, Donn K, Cummings M, Nyholt D, Jenkins MA, Scott C, Pupo GM, Dork T, Bendix R, Kirk J, Tucker K, McCredie MR, Hopper JL, Sambrook J, Mann GJ and Khanna KK . (2002). J. Natl. Cancer Inst., 94, 205–215.

  • Cornforth MN and Bedford JS . (1985). Science, 227, 1589–1591.

  • Cortez D, Wang Y, Qin J and Elledge SJ . (1999). Science, 286, 1162–1166.

  • Gatei M, Scott SP, Filippovitch I, Soronika N, Lavin MF, Weber B and Khanna KK . (2000a). Cancer Res., 60, 3299–3304.

  • Gatei M, Young D, Cerosaletti KM, Desai-Mehta A, Spring K, Kozlov S, Lavin MF, Gatti RA, Concannon P and Khanna K . (2000b). Nat. Genet., 25, 115–119.

  • Groves MR and Barford D . (1999). Curr. Opin. Struct. Biol., 9, 383–389.

  • Hess RD and Brandner G . (1997). Oncogene, 15, 2501–2504.

  • Izatt L, Greenman J, Hodgson S, Ellis D, Watts S, Scott G, Jacobs C, Liebmann R, Zvelebil MJ, Mathew C and Solomon E . (1999). Genes Chromosom. Cancer, 26, 286–294.

  • Kastan MB, Lim DS, Kim ST and Yang D . (2001). Acta Oncol., 40, 686–688.

  • Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B and Fornace Jr AJ . (1992). Cell, 71, 587–597.

  • Kim ST, Lim DS, Canman CE and Kastan MB . (1999). J. Biol. Chem., 274, 37538–37543.

  • Kim ST, Xu B and Kastan MB . (2002). Genes Dev., 16, 560–570.

  • Kishi S, Zhou XZ, Ziv Y, Khoo C, Hill DE, Shiloh Y and Lu KP . (2001). J. Biol. Chem., 276, 29282–29291.

  • Kohli M and Jorgensen TJ . (1999). Biochem. Biophys. Res. Commun., 257, 168–176.

  • Li S, Ting MS, Zheng L, Chen PL, Ziv Y, Shiloh Y, Lee EY and Lee WH . (2000). Nature, 406, 210–215.

  • Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH and Kastan MB . (2000). Nature, 404, 613–617.

  • Luo CM, Tang W, Mekeel KL, DeFrank JS, Anne PR and Powell SN . (1996). J. Biol. Chem., 271, 4497–4503.

  • Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K and Elledge SJ . (2000). Proc. Natl. Acad. Sci. USA, 97, 10389–10394.

  • Meyn MS . (1993). Science, 260, 1327–1330.

  • Meyn MS . (1999). Clin. Genet., 55, 289–304.

  • Morgan SE, Lovly C, Pandita TK, Shiloh Y and Kastan MB . (1997). Mol. Cell. Biol., 17, 2020–2029.

  • Pecker I, Avraham KB, Gilbert DJ, Savitsky K, Rotman G, Harnik R, Fukao T, Schrock E, Hirotsune S, Tagle DA, Collins FS, Wynshaw-Boris A, Ried T, Copeland NG, Jenkins NA, Shiloh Y and Ziv Y . (1996). Genomics, 35, 39–45.

  • Price BD and Youmell MB . (1996). Cancer Res., 56, 246–250.

  • Savitsky K, Sfez S, Tagle DA, Ziv Y, Sartiel A, Collins FS, Shiloh Y and Rotman G . (1995). Hum. Mol. Genet., 4, 2025–2032.

  • Scott SP, Bendix R, Chen P, Clark R, Dork T and Lavin MF . (2002). Proc. Natl. Acad. Sci. USA, 99, 925–930.

  • Taniguchi T, Garcia-Higuera I, Xu B, Andreassen PR, Gregory RC, Kim ST, Lane WS, Kastan MB and D'Andrea AD . (2002). Cell, 109, 459–472.

  • Taylor AM, Harnden DG, Arlett CF, Harcourt SA, Lehmann AR, Stevens S and Bridges BA . (1975). Nature, 258, 427–429.

  • Turenne GA, Paul P, Laflair L and Price BD . (2001). Oncogene, 20, 5100–5110.

  • Turenne GA and Price BD . (2001). BMC Cell. Biol., 2, 12.

  • Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ and Qin J . (2000). Genes Dev., 14, 927–939.

  • Yavuzer U, Smith GC, Bliss T, Werner D and Jackson SP . (1998). Genes Dev., 12, 2188–2199.

  • Yazdi PT, Wang Y, Zhao S, Patel N, Lee EY and Qin J . (2002). Genes Dev., 16, 571–582.

  • Zhao S, Weng YC, Yuan SS, Lin YT, Hsu HC, Lin SC, Gerbino E, Song MH, Zdzienicka MZ, Gatti RA, Shay JW, Ziv Y, Shiloh Y and Lee EY . (2000). Nature, 405, 473–477.

Download references

Acknowledgements

This work was supported by NIH Grants CA64585 and CA93602 to BDP and funds from the AJCRT foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan D Price.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Paul, P. & Price, B. ATM's leucine-rich domain and adjacent sequences are essential for ATM to regulate the DNA damage response. Oncogene 22, 6332–6339 (2003). https://doi.org/10.1038/sj.onc.1206760

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206760

Keywords

This article is cited by

Search

Quick links