Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

BRCA1 shifts p53-mediated cellular outcomes towards irreversible growth arrest

Abstract

The tumor suppressor protein BRCA1 has been shown to enhance p53 transcription, whereas activated p53 represses BRCA1 transcription. To further understand the functional interaction of these proteins, we investigated the role of BRCA1 in p53-induced phenotypes. We found that BRCA1 when subjected to forced expression acts synergistically with wild-type p53, resulting in irreversible growth arrest, as shown by VhD mouse fibroblast cells expressing a temperature-sensitive mutant of p53. Furthermore, reintroduction of both BRCA1 and p53 into BRCA1(−/−)/p53(−/−) mouse embryonic fibroblasts markedly increased the senescence phenotype compared to that induced by p53 alone. In particular, we found that BRCA1 expression attenuated p53-mediated cell death in response to γ-irradiation. Moreover, microarray screening of 11 000 murine genes demonstrated that a set of genes upregulated by p53 is enhanced by coexpression of BRCA1 and p53, suggesting that BRCA1 and p53 exert a promoter selectivity leading to a specific phenotype. Taken together, our results provide evidence that BRCA1 is involved in p53-mediated growth suppression rather than apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

FACS:

Fluorescence-activated cell sorting

FBS:

fetal bovine serum

GFP:

Green fluorescence protein

MEF:

Mouse embryonic fibroblast

PAGE:

Polyacrylamide gel electrophoresis

SA-β-gal:

Senescence-associated β-galactosidase

References

  • Abbott DW, Thompson M, Robinson-Benion C, Tomlinso G, Jensen RA and Holt JT . (1999). J. Biol. Chem., 274, 18808–18812.

  • Arizti P, Fang L, Park I, Yin Y, Solomon E, Ouchi T, Aaronson SA and Lee SW . (2000). Mol. Cell Biol., 20, 7450–7459.

  • Brodie SG, Xu X, Qiao W, Li WM, Cao L and Deng C-X . (2001). Oncogene, 20, 7514–7523.

  • Chapman MS and Verma IM . (1996). Nature, 382, 678–679.

  • Cortez D, Wang Y, Qin J and Elledge SJ . (1999). Science, 286, 1162–1166.

  • Deng C-X and Brodie SG . (2000). BioEssays, 22, 728–737.

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M and Campisi J . (1995). Proc. Natl. Acad. Sci. USA, 92, 9363–9367.

  • Fan W, Jm S, Tong T, Zhao H, Fan F, Antinore MJ, Rajasekaran B, Wu M and Zhan Q . (2002). J. Biol. Chem., 277, 8061–8067.

  • Ferbeyre G, de Stanchina E, Lin AW, Querido E, McCurrach ME, Hannon GJ and Lowe SW . (2002). Mol. Cell. Biol., 22, 3497–3508.

  • Gowen LC, Johnson BL, Latour AM, Sulik KK and Koller BH . (1996). Nat. Genet., 12, 191–194.

  • Hakem R, de la Pompa JL, Sirard C, Mo R, Woo M, Hakem A, Wakeham A, Potter J, Reitmair A, Billia F, Firpo E, Hu CC, Roberts J, Rossant J and Mak TW . (1996). Cell, 85, 1009–1023.

  • Harkin DP, Bean JM, Miklos D, Song YH, Truong VB, Englert C, Christians FC, Ellisen LW, Maheswaran S, Oliner JD and Haber DA . (1999). Cell, 97, 575–586.

  • Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B and Fornace Jr AJ . (1992). Cell, 71, 587–597.

  • Lee EY . (2002). BRCA1, Chk1 in G2/M checkpoint: a new order of regulation. Cell Cycle, 1, 178–180.

    Article  CAS  Google Scholar 

  • Lee JS, Collins KM, Brown AL, Lee CH and Chung JH . (2000). Nature, 404, 201–204.

  • Levine AJ . (1997). Cell, 88, 323–331.

  • Li S, Ting NS, Zheng L, Chen PL, Ziv Y, Shiloh Y, Lee EY and Lee WH . (2000). Nature, 406, 210–215.

  • Liu CY, Flesken-Nikitin A, Li S, Zeng Y and Lee WH . (1996). Genes Dev., 10, 1835–1843.

  • Macip S, Igarashi M, Fang L, Chen A, Pan ZQ, Lee SW and Aaronson SA . (2002). EMBO J., 21, 2180–2188.

  • MacLachlan TK, Dash BC, Dicker DT and El-Deiry WS . (2000a). J. Biol. Chem., 275, 31869–31875.

  • MacLachlan TK, Somasundaram K, Sgagias M, Shifman Y, Muschel RJ, Cowan KH and El-Deiry WS . (2000b). J. Biol. Chem., 275, 2777–2785.

  • MacLachlan TK, Takimoto R and El-Deiry WS . (2002). Mol. Cell. Biol., 22, 4280–4292.

  • Monteiro AN, August A and Hanafusa H . (1996). Proc Natl. Acad. Sci. USA, 93, 13595–13599.

  • Ouchi T, Monteiro AN, August A, Aaronson SA and Hanafusa H . (1998). Proc. Natl. Acad. Sci. USA, 95, 2302–2306.

  • Ouchi T, Lee SW, Ouchi M, Aaronson SA and Horvath CM . (2000). Proc. Natl. Acad. Sci. USA, 97, 5208–5213.

  • Scully R, Chen J, Ochs RL, Keegan K, Hoekstra M, Feunteun J and Livingston DM . (1997). Cell, 90, 425–435.

  • Scully R, Ganesan S, Vlasakova K, Chen J, Socolovsky M and Livingston DM . (1999). Mol. Cell, 4, 1093–1099.

  • Scully R and Livingston DM . (2000). Nature, 408, 429–432.

  • Somasundaram K, MacLachlan TK, Burns TF, Sgagias M, Cowan KH, Weber BL and El-Deiry WS . (1999). Oncogene, 18, 6605–6614.

  • Somasundaram K, Zhang H, Zeng YX, Houvras Y, Peng Y, Wu GS, Licht JD, Weber BL and El-Deiry WS . (1997). Nature, 389, 187–190.

  • Sugrue MM, Shin DY, Lee SW and Aaronson SA . (1997). Proc. Natl. Acad. Sci. USA, 94, 9648–9653.

  • Tibbetts RS, Cortez D, Brumbaugh KM, Scully R, Livingston D, Elledge SJ and Abraham RT . (2000). Genes Dev., 14, 2989–3002.

  • Tran H, Brunet A, Grenier JM, Datta SR, Fornace Jr AJ, DiStefano PS, Chiang LW and Greenberg ME . (2002). Science, 296, 530–534.

  • Venkitaraman AR . (2002). Cell, 108, 171–182.

  • Vogelstein B, Lane D and Levine AJ . (2000). Nature, 408, 307–310.

  • Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ and Qin J . (2000). Genes Dev., 14, 927–939.

  • Wang SC, Makino K, Su LK, Pao AY, Kim JS and Hung MC . (2001). Cancer Res., 61, 838–842.

  • Welcsh PL, Lee MK, Gonzalez-Hernandez RM, Black DJ, Mahadevappa M, Swisher EM, Warrington JA and King MC . (2002). Proc. Natl. Acad. Sci, USA, 99, 7560–7565.

  • Wu X, Bayle JH, Olson D and Levine AJ . (1993). Genes Dev., 7, 1126–1132.

  • Xu B, Kim S and Kastan MB . (2001). Mol. Cell. Biol., 21, 3445–3450.

  • Xu X, Qiao W, Linke SP, Cao L, Li WM, Furth PA, Harris CC and Deng CX . (2001). Nat. Genet., 28, 266–271.

  • Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW, Harris CC, Ried T and Deng CX . (1999). Mol. Cell, 3, 389–395.

  • Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH and Brody LC . (2002) BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat. Genet., 30, 285–289.

    Article  Google Scholar 

  • Zhang H, Somasundaram K, Peng Y, Tian H, Zhang H, Bi D, Weber BL and El-Deiry WS . (1998). Oncogene, 16, 1713–1721.

Download references

Acknowledgements

We thank K-P Lu for useful comments and suggestions, M Ouchi for technical assistance, and M Meyer for proofreading of the manuscript. We thank R Scully for HCC1937-IRES BRCA1 cells, A Levine and X Wu for providing VhD cells, B Vogelstein for the adenovirus expression system and J Yu for PUMA antibodies. This work was supported in part by Grants CA78356, CA85214, and CA80058 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam W Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ongusaha, P., Ouchi, T., Kim, Kt. et al. BRCA1 shifts p53-mediated cellular outcomes towards irreversible growth arrest. Oncogene 22, 3749–3758 (2003). https://doi.org/10.1038/sj.onc.1206439

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206439

Keywords

This article is cited by

Search

Quick links