Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Loss of GFAP expression in high-grade astrocytomas does not contribute to tumor development or progression

Abstract

In astrocytic neoplasms, the number of cells expressing glial fibrillary acidic protein (GFAP) is inversely proportional to the extent of anaplasia. The loss of GFAP expression, the principal marker of astroglial cells, in these tumors has been proposed to constitute a step in their development and progression. To test this hypothesis, we crossed p53-negative (p53−/−) mice, which frequently develop astrocytomas after intrauterine exposure to ethylnitrosourea, with GFAP-negative (GFAP−/−) mice or GFAP+/+ controls. Brain tumors of glial origin were found in 12 of 35 GFAP+/+ p53−/− mice (34%) and in 11 of 27 GFAP−/− p53−/− mice (41%). The two groups did not differ in the age at which tumors were detected or in tumor histology or progression. Thus, the loss of GFAP expression frequently seen in high-grade astrocytomas does not constitute a step in tumor development. Rather, it may represent the undifferentiated state of these cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 2

Similar content being viewed by others

References

  • Bigner SH, McLendon RE, Al-dosari N and Rasheed A . (1998). The Genetic Basis of Human Cancer. Vogelstein B and Kinsler KW (eds). McGraw-Hill: New York, pp. 661–670.

    Google Scholar 

  • Chen WJ and Liem RK . (1994). J. Cell Biol., 127, 813–823.

  • Dalton S . (1992). EMBO J., 11, 1797–1804.

  • Deck JH, Eng LF, Bigbee J and Woodcock SM . (1978). Acta Neuropathol. (Berl.), 42, 183–190.

  • Eliasson C, Sahlgren C, Berthold CH, Stakeberg J, Celis JE, Betsholtz C, Eriksson JE and Pekny M . (1999). J. Biol. Chem., 274, 3996–4006.

  • Eng LF, Vanderhaeghen JJ, Bignami A and Gerstl G . (1971). Brain Res., 28, 351–354.

  • Eng LF and Rubinstein LJ . (1978). J. Histochem. Cytochem., 26, 513–522.

  • Eng LF, Ghirnikar RS and Lee YL . (2000). Neurochem. Res., 25, 1439–1451.

  • Engebraaten O, Hjortland GO, Hirschberg H and Fodstad O . (1999). J. Neurosurg., 90, 125–132.

  • Hara A, Sakai N, Yamada H, Niikawa S, Ohno T, Tanaka T and Mori H . (1991). Surg. Neurol., 36, 190–194.

  • Inagaki M, Gonda Y, Nishizawa K, Kitamura S, Sato C, Ando S, Tanabe K, Kikuchi K, Tsuiki S and Nishi Y . (1990). J. Biol. Chem., 265, 4722–4729.

  • Jacque CM, Vinner C, Kujas M, Raoul M, Racadot J and Baumann NA . (1978). J. Neurol. Sci., 35, 147–155.

  • Jacque CM, Kujas M, Poreau A, Raoul M, Collier P, Racadot J and Baumann N . (1979). J. Natl. Cancer Inst., 62, 479–483.

  • Kajiwara K, Orita T, Nishizaki T, Kamiryo T, Nakayama H and Ito H . (1992). Brain Res., 572, 314–318.

  • Ku NO, Liao J, Chou CF and Omary MB . (1996). Cancer Metastasis Rev., 15, 429–444.

  • Leonard JR, D'Sa C, Klocke BJ and Roth KA . (2001). Oncogene, 20, 8281–8286.

  • Livingstone LR, White A, Sprouse J, Livanos E, Jacks T and Tlsty TD . (1992). Cell, 70, 923–935.

  • Oda H, Zhang S, Tsurutani N, Shimizu S, Nakatsuru Y, Aizawa S and Ishikawa T . (1997). Cancer Res., 57, 646–650.

  • Pekny M, Levéen P, Pekna M, Eliasson C, Berthold C-H, Westermark B and Betsholtz C . (1995). EMBO J., 14, 1590–1598.

  • Pekny M, Eliasson C, Chien CL, Kindblom LG, Liem R, Hamberger A and Betsholtz C . (1998). Exp. Cell Res., 239, 332–343.

  • Pekny M, Johansson CB, Eliasson C, Stakeberg J, Wallen A, Perlmann T, Lendahl U, Betsholtz C, Berthold CH and Frisen J . (1999). J. Cell Biol., 145, 503–514.

  • Pekny M . (2001). Prog. Brain Res., 132, 23–30.

  • Rutka JT and Smith SL . (1993). Cancer Res., 53, 3624–3631.

  • Rutka JT, Hubbard SL, Fukuyama K, Matsuzawa K, Dirks PB and Becker LE . (1994). Cancer Res., 54, 3267–3272.

  • Sidransky D, Mikkelsen T, Schwechheimer K, Rosenblum ML, Cavanee W and Vogelstein B . (1992). Nature, 355, 846–847.

  • Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH and Tavtigian SV . (1997). Nat. Genet., 15, 356–362.

  • Tascos NA, Parr J and Gonatas NK . (1982). Hum. Pathol., 13, 454–458.

  • Toda M, Miura M, Asou H, Toya S and Uyemura K . (1994). J. Neurochem., 63, 1975–1978.

  • Toda M, Miura M, Asou H, Sugiyama I, Kawase T and Uyemura K . (1999). Neurochem. Res., 24, 339–343.

  • Tsujimura K, Tanaka J, Ando S, Matsuoka Y, Kusubata M, Sugiura H, Yamauchi T and Inagaki M . (1994). J. Biochem. (Tokyo), 116, 426–434.

  • van der Meulen JD, Houthoff HJ and Ebels EJ . (1978). Neuropathol. Appl. Neurobiol., 4, 177–190.

  • Velasco ME, Dahl D, Roessmann U and Gambetti P . (1980). Cancer, 45, 484–494.

  • Wechsler W, Rice JM and Vesselinovitch SD . (1979). Natl. Cancer Inst. Monogr., 51, 219–226.

  • Weinstein DE, Shelanski ML and Liem RK . (1991). J. Cell. Biol., 112, 1205–1213.

  • Weiss WA . (2000). Curr. Opin. Pediatr., 6, 543–548.

  • Westermark B . (1973). Int. J. Cancer, 12, 438–451.

  • Yahanda AM, Bruner JM, Donehower LA and Morrison RS . (1995). Mol. Cell. Biol., 15, 4249–4259.

  • Yong VW . (1992). J. Neurol. Sci., 111, 92–103.

  • Zhu Y and Parada LF . (2002). Nat. Rev. Cancer, 8, 616–626.

Download references

Acknowledgements

This article is dedicated to the memory of Professor Jan Pontén. We thank Dr Ricardo Feinstein (State Veterinary Institute, Uppsala, Sweden) for help with characterization of the tumors, Professor Christer Betsholtz for valuable discussions, and Dr Marcela Pekna for critical reading of the manuscript. This study was supported by grants from the Swedish Cancer Foundation (project no. 3622), the Swedish Medical Research Council (project no. 11548), the Swedish Society for Medicine, the Swedish Society for Medical Research, the King Gustaf V Foundation, Volvo Assar Gabrielsson Fond, and the Swedish Stroke Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milos Pekny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelmsson, U., Eliasson, C., Bjerkvig, R. et al. Loss of GFAP expression in high-grade astrocytomas does not contribute to tumor development or progression. Oncogene 22, 3407–3411 (2003). https://doi.org/10.1038/sj.onc.1206372

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206372

Keywords

This article is cited by

Search

Quick links