Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

The transcriptional response after oxidative stress is defective in Cockayne syndrome group B cells

Abstract

Cockayne syndrome (CS) is a human hereditary disease belonging to the group of segmental progerias, and the clinical phenotype is characterized by postnatal growth failure, neurological dysfunction, cachetic dwarfism, photosensitivity, sensorineural hearing loss, and retinal degradation. CS-B cells are defective in transcription-coupled DNA repair, base excision repair, transcription, and chromatin structural organization. Using array analysis, we have examined the expression profile in CS complementation group B (CS-B) fibroblasts after exposure to oxidative stress (H2O2) before and after complete complementation with the CSB gene. The following isogenic cell lines were compared: CS-B cells (CS-B null), CS-B cells complemented with wild-type CSB (CS-B wt), and a stably transformed cell line with a point mutation in the ATPase domain of CSB (CS-B ATPase mutant). In the wt rescued cells, we detected significant induction (two-fold) of 112 genes out of the 6912 analysed. The patterns suggested an induction or upregulation of genes involved in several DNA metabolic processes including DNA repair, transcription, and signal transduction. In both CS-B mutant cell lines, we found a general deficiency in transcription after oxidative stress, suggesting that the CSB protein influenced the regulation of transcription of certain genes. Of the 6912 genes, 122 were differentially regulated by more than two-fold. Evidently, the ATPase function of CSB is biologically important as the deficiencies seen in the ATPase mutant cells are very similar to those observed in the CS-B-null cells. Some major defects are in the transcription of genes involved in DNA repair, signal transduction, and ribosomal functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 7
Figure 6
Figure 8

Similar content being viewed by others

Abbreviations

CS:

cockayne syndrome

CSB:

cockayne syndrome group B

CV:

coefficient of variation

Wt:

wild type CS-B wt CS1AN/pc3.1-CSBwt

CS-B null:

CS1AN/pc3.1

CS-B ATPase mutant:

CS1AN/pc3.1-CSBE646Q

TCR:

transcription-coupled repair

BER:

base excision repair

UDG:

uracil DNA glycosylase

NER:

nucleotide excision repair

References

  • Allen RG and Tresini M . (2000). Oxidative stress and gene regulation. Free Radic. Biol. Med., 28, 463–499.

    Article  CAS  Google Scholar 

  • Balajee AS and Bohr VA . (2000). Genomic heterogeneity of nucleotide excision repair. Gene, 250, 15–30.

    Article  CAS  Google Scholar 

  • Balajee AS, May A, Dianov GL, Friedberg EC and Bohr VA . (1997). Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells. Proc. Natl. Acad. Sci. USA, 94, 4306–4311.

    Article  CAS  Google Scholar 

  • Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY, Zhang HP, Donnellan M, Mahler S, Pryor K, Walsh BJ, Nicholson RC, Fairlie WD, Por SB, Robbins JM and Breit SN . (1997). MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc. Natl. Acad. Sci. USA, 94, 11514–11519.

    Article  CAS  Google Scholar 

  • Bregman DB, Halaban R, Van bool AJ, Henning KA, Friedberg EC and Warren SL . (1996). UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl. Acad Sci. USA, 93, 11586–11590.

    Article  CAS  Google Scholar 

  • Cao SX, Dhahbi JM, Mote PL, Spindler SR . (2001). Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice. Proc. Natl. Acad. Sci. USA, 98, 10630–10635.

    Article  CAS  Google Scholar 

  • Citterio E, Van Dem Boom, Schnitzler G, Kvanaar R, Bonte E, Kingston RE, Hoeijmakers JH and Vermeulen W . (2000). ATP-dependent chromatin remodeling by the cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell. Biol., 20, 7643–7653.

    Article  CAS  Google Scholar 

  • Dalton TP, Shertzer HG and Puga A . (1999). Regulation of gene expression by reactive oxygen. Annu. Rev. Pharmacol. Toxicol., 39, 67–101.

    Article  CAS  Google Scholar 

  • De Wit R, Makkinje M, Boonstra J, Verkleij AJ and JA . (2001). Hydrogen peroxide reversibly inhibits epidermal growth factor (EGF) receptor internalization and coincident ubiquitination of the EGF receptor and Eps15. FASEB J., 15, 306–308.

    Article  CAS  Google Scholar 

  • Dhar V, Adler V, Lehmann A and Ronai Z . (1996). Impaired jun-NH2-terminal kinase activation by ultraviolet irradiation in fibroblasts of patients with Cockayne syndrome complementation group B. Cell Growth Differ., 7, 841–846.

    CAS  PubMed  Google Scholar 

  • Dianov G, Bischoff C, Sunesen M and Bohr VA . (1999). Repair of 8-oxoguanine in DNA is deficient in Cockayne syndrome group B cells. Nucleic Acids Res., 27, 1365–1368.

    Article  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO and Botstein D . (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, 95, 14863–14868.

    Article  CAS  Google Scholar 

  • Feder ME and Hofmann GE . (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol., 61, 243–282.

    Article  CAS  Google Scholar 

  • Finkel T and Holbrook NJ . (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408, 239–247.

    Article  CAS  Google Scholar 

  • Friedberg EC . (1996). Cockayne syndrome – a primary defect in DNA repair, transcription, both or neither? BioEssays, 18, 731–738.

    Article  CAS  Google Scholar 

  • Friedberg EC, Walker GC and Siede W . (1995). DNA Repair and Mutagenesis. ASM Press: Washington, DC.

    Google Scholar 

  • Godon C, Lagniel G, Lee J, Buhler JM, Kieffer S, Perrot M, Boucherie H, Toledano MB, Labarre J . (1998). The H2O2 stimulon in Sacharomyces cerevisiae. J. Biol. Chem., 273, 22480–22489.

    Article  CAS  Google Scholar 

  • Guyton KZ, Liu Y, Gorospe M, Xu Q and Holbrook NJ . (1996). Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J. Biol. Chem., 271, 4138–4142.

    Article  CAS  Google Scholar 

  • Henning K, Li L, Legerski R, Iyer N, McDaniel L, Schultz R, Stefanini M, Lehmann A, Mayne L, Friedberg E . (1995). The Cockayne syndrome complementation group A gene encodes a WD-repeat protein which interacts with CSB protein and a subunit of the RNA pol II transcription factor IIH. Cell, 82, 555–566.

    Article  CAS  Google Scholar 

  • Hollenbach S, Dhenaut A, Eckert I, Radicella JP and Epe B . (1999). Overexpression of Ogg1 in mammalian cells: effects on induced and spontaneous oxidative DNA damage and mutagenesis. Carcinogenesis, 20, 1863–1868.

    Article  CAS  Google Scholar 

  • Huang C, Li J, Ding M, Leonard SS, Wang L, Castranova V, Vallyathan V and Shi X . (2001). UV induces phosphorylation of protein kinase B (Akt) at Ser-473 and Thr-308 in mouse epidermal Cl 41 cells through hydrogen peroxide. J. Biol. Chem., 276, 40234–40240.

    Article  CAS  Google Scholar 

  • Kayo T, Allison DB, Weindruch R and Prolla TA . (2001). Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc. Natl. Acad. Sci. USA, 98, 5093–5098.

    Article  CAS  Google Scholar 

  • Keyse SM, Applegate LA, Tromvoukis Y and Tyrrell RM . (1990). Oxidant stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts. Mol. Cell. Biol., 10, 4967–4969.

    Article  CAS  Google Scholar 

  • Keyse SM and Tyrrell RM . (1987). Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts. J. Biol. Chem., 262, 14821–14825.

    CAS  PubMed  Google Scholar 

  • Kim SW, Muise AM, Lyons PJ and Ro HS . (2001). Regulation of adipogenesis by a transcriptional repressor that modulates MAPK activation. J. Biol. Chem., 276, 10199–10206.

    Article  CAS  Google Scholar 

  • Krokan HE, Otterlei M, Nilsen H, Kavli B, Skorpen F, Andersen S, Skjelbred C, Akbari M, Aas PA and Slupphaug G . (2001). Properties and functions of human uracil-DNA glycosylase from the UNG gene. Prog. Nucleic Acid Res. Mol. Biol., 68, 365–386.

    Article  CAS  Google Scholar 

  • Krokan HE, Standal R and Slupphaug G . (1997). DNA glycosylases in the base excision repair of DNA. Biochem. J., 325, 1–16.

    Article  CAS  Google Scholar 

  • Kuo ML, Lee KC, Lin JK and Huang TS . (1995). Pronounced activation of protein kinase C, ornithine decarboxylase and c-jun proto-oncogene by paraquat-generated active oxygen species in WI-38 human lung cells. Biochim. Biophys. Acta, 1268, 229–236.

    Article  Google Scholar 

  • Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J and Woodgett JR . (1994). The stress-activated protein kinase subfamily of c-Jun kinases. Nature, 369, 156–160.

    Article  CAS  Google Scholar 

  • Lee CK, Klopp RG, Weindruch R and Prolla TA . (1999). Gene expression profile of aging and its retardation by caloric restriction. Science, 285, 1390–1393.

    Article  CAS  Google Scholar 

  • Lee CK, Weindruch R and Prolla TA . (2000). Gene-expression profile of the ageing brain in mice. Nat. Genet., 25, 294–297.

    Article  CAS  Google Scholar 

  • Lee HM, Wang C, Hu Z, Greeley GH, Makalowski W, Hellmich HL and Englander EW . (2002). Hypoxia induces mitochondrial DNA damage and stimulates expression of a DNA repair enzyme, the Escherichia coli MutY DNA glycosylase homolog (MYH), in vivo, in the rat brain. J. Neurochem., 80, 928–937.

    Article  CAS  Google Scholar 

  • Lee SK, Yu SL, Prakash L and Prakash S . (2001). Requirement for Yeast RAD26, a homolog of the human CSB gene, in elongation by RNA polymerase II. Mol. Cell. Biol., 21, 8651–8656.

    Article  CAS  Google Scholar 

  • Ly DH, Lockhart DJ, Lerner RA and Schultz PG . (2000). Mitotic misregulation and human aging. Science, 287, 2486–2492.

    Article  CAS  Google Scholar 

  • Mathew A, Mathur SK and Morimoto RI . (1998). Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Mol. Cell. Biol., 18, 5091–5098.

    Article  CAS  Google Scholar 

  • Miller RA, Galecki A and Shmookler-Reis RJ . (2001). Interpretation, design, and analysis of gene array expression experiments. J. Gerontol. A Biol. Sci. Med. Sci., 56, B52–B57.

    Article  CAS  Google Scholar 

  • Morimoto RI and Santoro MG . (1998). Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat. Biotechnol., 16, 833–838.

    Article  CAS  Google Scholar 

  • Nance M and Berry S . (1992). Cockayne syndrome: review of 140 cases. Am. J. Med. Genet., 42, 68–84.

    Article  CAS  Google Scholar 

  • Parsons R, Myeroff LL, Liu B, Willson JK, Markowitz SD, Kinzler KW and Vogelstein B . (1995). Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res., 55, 5548–5550.

    CAS  PubMed  Google Scholar 

  • Selby CP and Sancar A . (1997). Cockayne syndrome group B protein enhances elongation by RNa polymerase II . Proc. Natl. Acad. Sci. USA, 94, 11205–11209.

    Article  CAS  Google Scholar 

  • Selzer RR, Nyaga S, Tuo J, May A, Muftuoglu M, Christiansen M, Citterio E, Brosh Jr RM and Bohr VA . (2002). Differential requirement for the ATPase domain of the Cockayne syndrome group B gene in the processing of UV-induced DNA damage and 8-oxoguanine lesions in human cells. Nucleic Acids Res., 30, 782–793.

    Article  CAS  Google Scholar 

  • Sitte N, Merker K and Grune T . (1998). Proteasome-dependent degradation of oxidized proteins in MRC-5 fibroblasts. FEBS Lett., 440, 399–402.

    Article  CAS  Google Scholar 

  • Sitte N, Merker K, von Zglinicki T, Grune T and Davies KJ . (2000). Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part I – effects of proliferative senescence. FASEB J., 14, 2495–2502.

    Article  CAS  Google Scholar 

  • Tan M, Wang Y, Guan K and Sun Y . (2000). PTGF-beta, a type beta transforming growth factor (TGF-beta) superfamily member, is a p53 target gene that inhibits tumor cell growth via TGF-beta signaling pathway. Proc. Natl. Acad. Sci. USA, 97, 109–114.

    Article  CAS  Google Scholar 

  • Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, III, Becker KG and Ko MS . (2000). Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc. Natl. Acad. Sci., USA, 97, 9127–9132.

    Article  Google Scholar 

  • Tuo J, Muftuoglu M, Chen C, Jaruga P, Selzer RR, Brosh RM Jr, Rodriguez H, Dizdaroglu M and Bohr VA . (2001). The Cockayne Syndrome group B gene product is involved in general genome base excision repair of 8-hydroxyguanine in DNA. J. Biol. Chem., 276, 45772–45779.

    Article  CAS  Google Scholar 

  • Tyrrell RM and Basu-Modak S . (1994). Transient enhancement of heme oxygenase 1 mRNA accumulation: a marker of oxidative stress to eukaryotic cells. Methods Enzymol., 234, 224–235.

    Article  CAS  Google Scholar 

  • Wang Y, Cheong D, Chan S and Hooi SC . (2000). Ribosomal protein L7a gene is upregulated but not fused to the tyrosine kinase receptor as chimeric trk oncogene in human colorectal carcinoma. Int. J. Oncol., 16, 757–762.

    CAS  PubMed  Google Scholar 

  • Weber JD, Raben DM, Phillips PJ and Baldassare JJ . (1997). Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem. J., 326 (Part 1), 61–68.

    Article  CAS  Google Scholar 

  • Weinberg RA . (1995). The retinoblastoma protein and cell cycle control. Cell, 81, 323–330.

    Article  CAS  Google Scholar 

  • Weindruch R, Kayo T, Lee CK and Prolla TA . (2002). Gene expression profiling of aging using DNA microarrays. Mech. Ageing Dev., 123, 177–193.

    Article  CAS  Google Scholar 

  • Wheaton K, Atadja P and Riabowol K . (1996). Regulation of transcription factor activity during cellular aging. Biochem Cell Biol., 74, 523–534.

    Article  CAS  Google Scholar 

  • Yu A, Fan HY, Liao D, Bailey AD and Weiner AM . (2000). Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol. Cell, 5, 801–810.

    Article  CAS  Google Scholar 

  • Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, Tom E, Mack DH and Levine AJ . (2000). Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev., 14, 981–993.

    Article  CAS  Google Scholar 

  • Zou S, Meadows S, Sharp L, Jan LY and Jan YN . (2000). Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA, 97, 13726–13731.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Chris Cheadle for statistical help and discussions. Complete results for all genes on the arrays can be found at the following website: http://www.grc.nia.nih.gov/branches/rrb/dna/dnapubs.htm. This work was supported in part by the Danish Center for Molecular Gerontology, the Danish Medical Research Council (9902876), the Danish Cancer Society (9914403 9132/99 14403), Fonden til Lægevidenskabens Fremme and Direktør E Danielsens Fond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilhelm A Bohr.

Additional information

This article is a ‘United States Government Work’ paper as defined by the US Copyright Act.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyng, K., May, A., Brosh, R. et al. The transcriptional response after oxidative stress is defective in Cockayne syndrome group B cells. Oncogene 22, 1135–1149 (2003). https://doi.org/10.1038/sj.onc.1206187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206187

Keywords

This article is cited by

Search

Quick links