Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Photolyase/cryptochrome blue-light photoreceptors use photon energy to repair DNA and reset the circadian clock

Abstract

Blue light governs a number of cellular responses in bacteria, plants, and animals, including photoreactivation, plant development, and circadian photoentrainment. These activities are mediated by a family of highly conserved flavoproteins, the photolyase/cryptochrome family. Photolyase binds to UV photoproducts in DNA and repairs them in a process called photoreactivation in which blue light is used to initiate a cyclic electron transfer to break bonds and restore the integrity of DNA. Cryptochrome, which has a high degree of sequence identity to photolyase, works as the main circadian photoreceptor and as a component of the molecular clock in animals, including mammals, and regulates growth and development in plants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Adams MD, Kerlavage AR, Fleischmann RD, Fuldner RA, Bult CJ, Lee NH, Kirkness EF, Weinstock KG, Gocayne JD, White O et al . 1995 Nature 377: 3–174

  • Afonso CL, Tulman ER, Lu Z, Oma E, Kutish GF, Rock DL . 1999 J. Virol. 73: 533–552

  • Afonso CL, Tulman ER, Lu Z, Zsak L, Kutish GF, Rock DL . 2000 J. Virol. 74: 3815–3831

  • Ahmad M, Cashmore AR . 1993 Nature 366: 162–166

  • Ahmad M, Jarillo JA, Smirnova O, Cashmore AR . 1998 Mol. Cell 1: 939–948

  • Akashi M, Tsuchiya Y, Yoshino T, Nishida E . 2002 Mol. Cell. Biol. 22: 1693–1703

  • Anderson LE, Morris JE, Sasser LB, Stevens RG . 2000 Cancer Lett. 148: 121–126

  • Baer ME, Sancar GB . 1993 J. Biol. Chem. 268: 16717–16724

  • Balsalobre A, Damiola F, Schibler U . 1998 Cell 93: 929–937

  • Berson DM, Dunn FA, Takao M . 2002 Science 95: 1070–1073

  • Briggs WR, Huala E . 1999 Annu. Rev. Cell. Dev. Biol. 15: 33–62

  • Camacho F, Cilio M, Guo Y, Virshup DM, Patel K, Khorkova O, Styren S, Morse B, Yao Z, Geesler GA . 2001 FEBS Lett. 489: 159–165

  • Ceriani MF, Darlington TK, Staknis D, Mas P, Petti AA, Weitz CJ, Kay SA . 1999 Science 285: 553–556

  • Deisenhofer J . 2000 Mutat. Res. 460: 143–149

  • Egan ES, Franklin TM, Hildebrand-Chae MJ, McNeil GP, Roberts MA, Schroeder AJ, Zhang X, Jackson FR . 1999 J. Neurosci. 19: 3665–3673

  • Eide VJ, Vielhaber EL, Hinz WA, Virshup DM . 2002 J. Biol. Chem. 277: 17248–17254

  • Eker AP, Dekker RH, Berends W . 1981 Photochem. Photobiol. 33: 65–72

  • Eker APM, Hessels JKC, van de Velde J . 1988 Biochemistry 27: 1758–1765

  • Elich TD, Chory J . 1997 Plant Cell. 9: 2271–2280

  • Emery P, Stanewsky R, Hall JC, Rosbash M . 2000 Nature 404: 456–457

  • Griffin Jr EA, Staknis D, Weitz CJ . 1999 Science 286: 768–771

  • Guo H, Yang H, Mockler TC, Lin C . 1998 Science 279: 1360–1363

  • Hahn RA . 1991 Epidemiology 9: 490–494

  • Hattar S, Liao H, Takao M, Berson DM, Yau K . 2002 Science 295: 1065–1070

  • Hays JB, Martin SJ, Bhatia K . 1985 J. Bacteriol. 161: 602–608

  • Helfrich-Förster C, Winter C, Hofbauer A, Hall JC, Stanewsky R . 2001 Neuron 30: 249–261

  • Hitomi K, Okamoto K, Daiyasu H, Miyashita H, Iwai S, Toh H, Ishiura M, Todo T . 2000 Nucleic Acids Res. 28: 2353–2362

  • Hoffman PD, Batschauer A, Hays JB . 1996 Mol. Gen. Genet. 253: 259–265

  • Hsu DS, Zhao X, Zhao S, Kazantsev A, Wang R, Todo T, Wei Y, Sancar A . 1996 Biochemistry 35: 13871–13877

  • Ishikawa T, Matsumoto A, Kato Jr T, Togashi S, Ryo H, Ikenaga M, Todo T, Ueda R, Tanimura T . 1999 Genes Cells 4: 57–65

  • Jöchle W . 1964 Ann. NY Acad. Sci. 117: 88–104

  • Johnson JL, Hamm-Alvarez S, Payne G, Sancar GB, Rajagopalan KV, Sancar A . 1988 Proc. Natl. Acad. Sci. USA 85: 2046–2050

  • Jorns MS, Sancar GB, Sancar A . 1984 Biochemistry 23: 2673–2679

  • Kanai S, Kikuno R, Toh H, Ryo H, Todo T . 1997 J. Mol. Evol. 45: 535–548

  • Kato T, Todo T, Ayoki H, Ishizaki K, Morita T, Mitra S, Ikenaga M . 1994 Nucleic Acids Res. 22: 4119–4124

  • Kiener A, Husain I, Sancar A, Walsh C . 1989 J. Biol. Chem. 264: 13880–13887

  • Kim ST, Malhotra K, Smith CA, Taylor JS, Sancar A . 1994 J. Biol. Chem. 269: 8535–8540

  • Kobayashi Y, Ishikawa T, Hirayama J, Daiyasu H, Kanai S, Toh H, Fukuda I, Tsujimura T, Terada N, Kamei Y, Yuba S, Iwai S, Todo T . 2000 Genes Cells 5: 725–738

  • Komori H, Masui R, Kuramitsu S, Yokoyama S, Shibata T, Inoue Y, Miki K . 2001 Proc. Natl. Acad. Sci. USA 98: 13560–13565

  • Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM . 1999 Cell 98: 193–205

  • Li YF, Kim S, Sancar A . 1993 Proc. Natl. Acad. Sci. USA 90: 4389–4393

  • Lin C, Ahmad M, Cashmore AR . 1996 Plant J. 10: 893–902

  • Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR . 1998 Proc. Natl. Acad. Sci. USA 95: 2686–2690

  • Lin C, Robertson DE, Ahmad M, Raibekas AA, Jorns MS, Cashmore AR . 1995 Science 269: 968–970

  • Lin F, Song W, Meyer-Bernstein E, Naidoo N, Sehgal A . 2001 Mol. Cell. Biol. 21: 7287–7294

  • Malhotra K, Kim ST, Sancar A . 1994 Biochemistry 33: 8712–8718

  • Malhotra K, Kim ST, Walsh C, Sancar A . 1992 J. Biol. Chem. 267: 15406–15411

  • Malhotra K, Kim S, Batschauer A, Dawut L, Sancar A . 1995 Biochemistry 34: 6892–6899

  • Más P, Devlin PF, Panda S, Kay SA . 2000 Nature 408: 207–211

  • Miyamoto Y, Sancar A . 1998 Proc. Natl. Acad. Sci. USA 95: 6097–6102

  • Miyamoto Y, Sancar A . 1999 Mol. Brain Res. 71: 238–243

  • Ng WO, Pakrasi HB . 2001 Mol. Gen. Genet. 264: 924–930

  • Özer Z, Reardon JT, Hsu DS, Malhotra K, Sancar A . 1995 Biochemistry 34: 15886–15889

  • Park H, Kim S, Sancar A, Deisenhofer J . 1995 Science 268: 1866–1872

  • Payne G, Heelis PF, Rohrs BR, Sancar A . 1987 Biochemistry 26: 7121–7127

  • Payne G, Sancar A . 1990 Biochemistry 29: 7715–7727

  • Petit C, Sancar A . 1999 Med. Sci. 12: 1411–1418

  • Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD . 2000 J. Neurosci. 20: 600–605

  • Provencio I, Rollag MD, Castrucci AM . 2002 Nature 415: 493

  • Roenneberg T, Foster RG . 1997 Photochem. Photobiol. 66: 549–561

  • Rosato E, Codd V, Mazzotta G, Piccin A, Zordan M, Costa R, Kyriacou CP . 2001 Curr. Biol. 11: 909–917

  • Sancar A . 1994 Biochemistry 33: 2–7

  • Sancar A . 1996 Annu. Rev. Biochem. 65: 43–81

  • Sancar A . 2000 Annu. Rev. Biochem. 69: 31–67

  • Sancar A, Franklin KA, Sancar GB . 1984 Proc. Natl. Acad. Sci. USA 81: 7397–7401

  • Sancar A, Sancar GB . 1988 Annu. Rev. Biochem. 57: 29–67

  • Sancar GB, Sancar A . 1987 Trends Biochem. Sci. 12: 259–261

  • Sancar GB, Smith FW . 1989 Mol. Cell. Biol. 9: 4767–4776

  • Sancar GB, Smith FW, Heelis PF . 1987a J. Biol. Chem. 262: 15457–15465

  • Selby CP, Sancar A . 1999 Photochem. Photobiol. 69: 105–107

  • Selby CP, Thompson C, Schmitz TM, Van Gelder RN, Sancar A . 2000 Proc. Natl. Acad. Sci. USA 97: 14697–14702

  • Shalitin D, Yang H, Mockler TC, Maymon M, Guo H, Whitelam GC, Lin C . 2002 Nature 417: 763–767

  • Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GTJ, Hastings MH, Reppert SM . 2000 Science 288: 1013–1019

  • Shigeyoshi Y, Taguchi K, Yamamoto S, Takekida S, Yan L, Tei H, Moriya T, Shibata S, Loros JJ, Dunlap JC, Okamura H . 1997 Cell 91: 1043–1053

  • Somers DE, Devlin PF, Kay SA . 1998 Science 282: 1488–1490

  • Srinivasan V, Schnitzlein WM, Tripathy DN . 2001 J. Virol. 75: 1681–1688

  • Stanewsky R, Kaneko M, Emery P, Berette B, Wager-Smith K, Kay SA, Rosbash M, Hall JC . 1998 Cell 95: 681–692

  • Stevens RG, Rea MS . 2001 Cancer Causes Control 12: 279–287

  • Tamada T, Kitadokoro K, Higuchi Y, Inaka K, Yasui A, de Ruiter PE, Eker APM, Miki K . 1997 Nat. Struct. Biol. 4: 887–891

  • Tamarkin L, Cohen M, Roselle D, Reichert C, Lippman M, Chabner B . 1981 Cancer Res. 41: 4432–4436

  • Tamarkin L, Danforth D, Lichter A . 1982 Science 216: 1003–1005

  • Thompson CL, Blaner WS, Van Gelder RN, Lai K, Quadro L, Colantuoni V, Gottesman ME, Sancar A . 2001 Proc. Natl. Acad. Sci. USA 98: 11708–11713

  • Thresher RJ, Vitaterna MH, Miyamoto Y, Kazantsev A, Hsu DS, Petit C, Selby CP, Dawut L, Smithies O, Takahashi JS, Sancar A . 1998 Science 282: 1490–1494

  • Todo T . 1999 Mutat. Res. 434: 89–97

  • Todo T, Ryo H, Yamamoto K, Toh H, Inui T, Ayaki H, Nomura T, Ikenaga M . 1996 Science 272: 109–112

  • Todo T, Takemori H, Ryo H, Ihara M, Matsunaga T, Nikaido O, Sato K, Nomura T . 1993 Nature 361: 371–374

  • Todo T, Tsuji H, Otoshi E, Hitomi K, Kim ST, Ikenaga M . 1997 Mutat. Res. 384: 195–204

  • van der Horst GTJ, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, Wit J, Verkerk A, Eker APM, van Leenen D, Buijs R, Bootsma D, Hoeijmakers JHJ, Yasui A . 1999 Nature 398: 627–630

  • Vielhaber E, Eide E, Rivers A, Gao Z, Virshup DM . 2000 Mol. Cell. Biol. 20: 4888–4899

  • Vielhaber EL, Duricka D, Ullman KS, Virshup DM . 2001 J. Biol. Chem. 276: 45921–45927

  • Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, Hitomi K, Thresher RJ, Ishikawa T, Miyazaki J, Takahashi JS, Sancar A . 1999 Proc. Natl. Acad. Sci. USA 96: 12114–12119

  • Willer DO, McFadden G, Evans DH . 1999 Virology 264: 319–343

  • Wood RD . 1997 J. Biol. Chem. 272: 23465–23468

  • Yagita K, Yamaguchi S, Tamanini F, van der Horst GTJ, Hoeijmakers JHJ, Yasui A, Loros JJ, Dunlap JC, Okamura H . 2000 Genes Dev. 14: 1353–1363

  • Yang H, Wu Y, Tang R, Liu D, Liu Y, Cashmore AR . 2000 Cell 103: 815–827

  • Yasui A, Eker APM, Yasuhira S, Yajima H, Kobayashi T, Takao M, Oikawa A . 1994 EMBO J. 13: 6143–6151

  • Yu W, Nomura M, Ikeda M . 2002 Biochem. Biophys. Res. Commun. 1290: 933–941

  • Zhao S, Sancar A . 1997 Photochem. Photobiol. 66: 727–731

  • Zhao X, Liu J, Hsu DS, Zhao S, Taylor JS, Sancar A . 1997 J. Biol. Chem. 272: 32580–32590

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz Sancar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, C., Sancar, A. Photolyase/cryptochrome blue-light photoreceptors use photon energy to repair DNA and reset the circadian clock. Oncogene 21, 9043–9056 (2002). https://doi.org/10.1038/sj.onc.1205958

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205958

Keywords

This article is cited by

Search

Quick links