Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Inactivation of Apc perturbs mammary development, but only directly results in acanthoma in the context of Tcf-1 deficiency

Abstract

Apc (adenomatous polyposis coli) encodes a tumour suppressor gene that is mutated in the majority of colorectal cancers. Recent evidence has also implicated Apc mutations in the aetiology of breast tumours. Apc is a component of the canonical Wnt signal transduction pathway, of which one target is Tcf-1. In the mouse, mutations of both Apc and Tcf-1 have been implicated in mammary tumorigenesis. We have conditionally inactivated Apc in both the presence and absence of Tcf-1 to examine the function of these genes in both normal and neoplastic development. Mice harbouring mammary-specific mutations in Apc show markedly delayed development of the mammary ductal network. During lactation, the mice develop multiple metaplastic growths which, surprisingly, do not spontaneously progress to neoplasia up to a year following their induction. However, additional deficiency of Tcf-1 completely blocks normal mammary development and results in acanthoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 6
Figure 4
Figure 5
Figure 7

Similar content being viewed by others

References

  • Bienz M, Clevers H . 2000 Cell 103: 311–320

  • Bradbury J, Edwards P, Niemeyer C, Dale T . 1995 Dev. Biol. 170: 553–563

  • Brisken C, Park S, Vass T, Lydon JP, O'Malley BW, Weinberg RA . 1998 Proc. Natl. Acad. Sci. USA 95: 5076–5081

  • Brisken C, Heineman A, Chavvaria T, Elenbaas B, Tan J, Dey S, McMahon J, McMahon A, Weinberg R . 2000 Genes Dev. 14: 650–654

  • Buckholm I, Nesland J, Borresen-Dale A-L . 2000 J. Pathol. 190: 15–19

  • Cadigan K, Nusse R . 1997 Genes Dev. 11: 3286–3305

  • Cardiff R, Anver M, Gusterson B, Hennighausen L, Jensen R, Merino M, Rehm S, Russo J, Tavassoli F, Wakefield L, Ward J, Green E . 2000 Oncogene 19: 968–988

  • Callahan R, Smith GH . 2000 Oncogene 19: 992–1001

  • Chapman R, Laurenco P, Tonner E, Flint D, Selbert S, Takeda K, Akira S, Clarke AR, Watson CJ . 1999 Genes Dev. 13: 2604–2616

  • Edwards PAW, Hiby S, Papkoff J, Bradbury JM . 1992 Oncogene 7: 2041–2051

  • Fearnhead NS, Britton MP, Bodmer WF . 2001 Hum. Molec. Genetics 10: 721–733

  • Furuuchi K, Tada M, Yamada H, Kataoka A, Furuuchi N, Hamada J, Takahashi M, Todo S, Moriuchi T . 2000 Am. J. Pathol. 156: 1997–2005

  • Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertson H, Joslyn G, Stevens J, Spirio L, Robertson M . 1991 Cell 66: 589–600

  • Guger KA, Gumbiner BM . 2000 Dev. Biol. 223: 441–448

  • Gu H, Marth J, Orban P, Mossman H, Rajewsky K . 1994 Science 265: 103–106

  • He T-C, Sparks A, Rago C, Hermeking H, Zawel L, da Costa L, Morin P, Vogelstein B, Kinzler KW . 1998 Science 281: 1509–1512

  • He T-C, Chan TA, Vogelstein B, Kinzler KW . 1999 Cell 99: 335–345

  • Ho K, Kalle W, Lo THS, Lam W, Tang C . 1999 Histopathology 35: 249–256

  • Imbert A, Eelkema R, Jordan S, Feiner H, Cowin P . 2001 J. Cell Biol. 153: 555–568

  • Ishitani T, Ninomiya-Tsuji J, Nagai S, Nishita M, Meneghini M, Barker N, Waterman M, Bowerman B, Clevers H, Shibuya H, Matsumoto K . 1999 Nature 399: 798–802

  • Jin Z, Tamura G, Tsuchiya T, Sakata K, Kashiwaba M, Osakabe M, Motoyama T . 2001 Br. J. Cancer 85: 69–73

  • Kashiwaba M, Tamura G, Ishida M . 1994 J. Cancer Res. Clin. Oncol. 120: 727–731

  • Kordon EC, Smith GH . 1998 Development 125: 1921–1930

  • Lane TF, Leder P . 1997 Oncogene 15: 2133–2144

  • Lin S-Y, Xia W, Wang J, Kwong K, Spohn B, Wen Y, Pestell R, Hung M-C . 2000 Proc. Natl. Acad. Sci. USA 97: 4262–4266

  • Michaelson JS, Leder P . 2001 Oncogene 20: 5093–5099

  • Midgley CA, White S, Howitt R, Save V, Dunlop MG, Hall PA, Lane DP, Wyllie AH, Bubb VJ . 1997 J. Pathol. 181: 426–433

  • Miyoshi K, Shillingford JM, Le Provost F, Gounari F, Bronson R, von Boehmer H, Taketo MM, Cardiff RD, Hennighausen L, Khazaie K . 2002 Proc. Natl. Acad. Sci. USA 99: 219–224

  • Moser AR, Mattes EM, Dove WF, Lindstrom MJ, Haag JD, Gould MN . 1993 Proc. Natl. Acad. Sci. USA 90: 8977–8981

  • Moser AR, Shoemaker AR, Connelly CS, Clipson L, Gould KA, Luongo C, Dove WF, Siggers PH, Gardner RL . 1995 Dev. Dyn. 203: 422–433

  • Moser R, Hegg F, Cardiff RD . 2001 Cancer Res. 61: 3480–3485

  • Nathke I, Adams C, Polakis P, Sellin J, Nelson WJ . 1996 J. Cell Biol. 134: 165–179

  • Nusse R, Varmus HE . 1982 Cell 31: 99–109

  • Polakis P . 2000 Genes Dev. 14: 1837–1851

  • Pollack AL, Barth AI, Altschuler Y, Nelson WJ, Mostov KE . 1997 J. Cell Biol. 137: 1651–1662

  • Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, Moerer P, van de Wetering M, Destree O, Clevers H . 1998 Nature 395: 608–612

  • Roose J, Clevers H . 1999 Biochim. Biophys. Acta 87456: M23–M37

  • Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R, Logtenberg T, Clevers H . 1999 Science 285: 1923–1926

  • Schlosshauer P, Brown S, Eisenger K, Yan Q, Guglielminetti E, Parsons R, Ellenson L, Kitajewski J . 2000 Carcinogenesis 21: 1453–1456

  • Selbert S, Bentley D, Melton D, Rannie D, Laurenco P, Watson C, Clarke AR . 1998 Transgenic Res. 7: 387–396

  • Shibata H, Toyama K, Shioya H, Ito M, Hirota M, Hasegawa S, Matsumoto H, Takano H, Akiyama T, Toyoshima K, Kanamaru R, Kanegae Y, Sarb I, Nakamura Y, Shiba K, Noda T . 1997 Science 278: 120–123

  • Shimizu H, Julius M, Giarre M, Zheng Z, Brown A, Kitajewski J . 1997 Cell Growth Differ. 8: 1349–1358

  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Ze'ev B . 1999 Proc. Natl. Acad. Sci. USA 96: 5522–5527

  • Soriano P . 1999 Nat. Genet. 21: 70–71

  • Smits R, Kielman M, Breukel C, Zurcher C, Neufeld K, Jagmohan-Changur S, Hofland N, van Dijk J, White R, Edelmann W, Kucherlapati R, Khan PM, Fodde R . 1999 Genes Dev. 13: 1309–1321

  • Tetsu O, McCormick F . 1999 Nature 398: 422–426

  • Thompson A, Morris R, Wallace M, Wyllie A, Steel C, Carter D . 1993 Br. J. Cancer 68: 64–68

  • Tsukamoto A, Grosschedl R, Guzman R, Parslow T, Varmus H . 1988 Cell 55: 619–625

  • Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV . 1994 Nature 369: 669–671

  • Woodage T, King S, Wacholder S, Hartge P, Struewing J, McAdams M, Laken S, Tucker M, Brody L . 1998 Nature Genet. 20: 62–65

  • Yu Q, Geng Y, Sicinski P . 2001 Nature 411: 1017–1021

Download references

Acknowledgements

This work was supported by the Royal Society, the BBSRC and the Association for International Cancer Research (AICR). We are grateful to Inke Nathke for the gift of the anti-APC antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R Clarke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallagher, R., Hay, T., Meniel, V. et al. Inactivation of Apc perturbs mammary development, but only directly results in acanthoma in the context of Tcf-1 deficiency. Oncogene 21, 6446–6457 (2002). https://doi.org/10.1038/sj.onc.1205892

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205892

Keywords

This article is cited by

Search

Quick links