Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Localization of the human oxytocin receptor in caveolin-1 enriched domains turns the receptor-mediated inhibition of cell growth into a proliferative response

Abstract

In this study, we investigated the functional role of the localization of human OTR in caveolin-1 enriched membrane domains. Biochemical fractionation of MDCK cells stably expressing the WT OTR-GFP indicated that only minor quantities of receptor are partitioned in caveolin-1 enriched domains. However, when fused to caveolin-2, the OTR protein proved to be exclusively localized in caveolin-1 enriched fractions, where it bound the agonist with increased affinity and efficiently coupled to Gαq/11. Interestingly, the chimeric protein was unable to undergo agonist-induced internalization and remained confined to the plasma membrane even after prolonged agonist exposure (120 min). A striking difference in receptor stimulation was observed when the OT-induced effect on cell proliferation was analysed: stimulation of the human WT OTR inhibited cell growth, whereas the chimeric protein had a proliferative effect. These data indicate that the localization of human OTR in caveolin-1 enriched microdomains radically alters its regulatory effects on cell growth; the fraction of OTR residing in caveolar structures may therefore play a crucial role in regulating cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Anderson RG . 1998 Ann. Rev. Biochem. 67: 199–225

  • Anderson RG, Kamen BA, Rothberg KG, Lacey SW . 1992 Science 255: 410–411

  • Bonifacino JS, Dell'Angelica EC . 1999 J. Cell Biol. 145: 923–926

  • Bussolati G, Cassoni P . 2001 Endocrinology 142: 1130–1136

  • Cassoni P, Sapino A, Fortunati N, Munaron L, Chini B, Bussolati G . 1997 Int. J. Cancer 72: 340–344

  • Cassoni P, Sapino A, Stella A, Fortunati N, Bussolati G . 1998 Int. J. Cancer 77: 695–700

  • Ceresa BP, Schmid SL . 2000 Curr. Opin. Cell Biol. 12: 204–210

  • Chini B, Mouillac B, Ala Y, Balestre M, Trumpp-Kallmeyer S, Hoflack J, Elands J, Hibert M, Manning M, Jard S, Barberis C . 1995 EMBO J. 14: 2176–2182

  • Chini B, Mouillac B, Balestre M, Trumpp-Kallmeyer S, Hoflack J, Hibert M, Andriolo M, Pupier S, Jard S, Barberis C . 1996 FEBS Letts. 397: 201–206

  • Cormack BP, Valdivia RH, Falkow S . 1996 Gene 173: 33–38

  • DeFea KA, Zalevsky J, Thoma MS, Dery O, Mullins RD, Bunnett NW . 2000 J. Cell Biol. 148: 1267–1281

  • Dessy C, Kelly RA, Balligand JL, Feron O . 2000 EMBO J. 19: 4272–4280

  • Elands J, Barberis C, Jard S . 1988 Am. J. Physiol. 254: (Suppl E) 31–38

  • Gimpl G, Fahrenholz F . 2000 Eur. J. Biochem. 267: 2483–2497

  • Gumbiner B, Stevenson B, Grimaldi A . 1988 J. Cell Biol. 107: 1575–1587

  • Gutkind JS . 1998 Oncogene 17: 1331–1342

  • Hailstones D, Sleer LS, Parton RG, Stanley KK . 1998 J. Lipid Res. 39: 369–379

  • Hansen SH, Sandvig K, van Deurs B . 1993 J. Cell Biol. 121: 61–72

  • Hoare S, Copland JA, Strakova Z, Ives K, Jeng YJ, Hellmich MR, Soloff MS . 1999 J. Biol. Chem. 274: 28682–28689

  • Kirk CJ, Guillon G, Balestre M, Jard S . 1986 Biochem. J. 240: 197–204

  • Klein U, Gimpl G, Fahrenholdz F . 1995 Biochem. 34: 13784–13793

  • Laemmli UK . 1970 Nature 227: 680–685

  • Lewis TS, Shapiro PS, Ahn NG . 1998 Adv. Cancer Res. 74: 49–139

  • Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG . 2001 J. Biol. Chem. 276: 19452–19460

  • Ohmichi M, Koike K, Nohara A, Kanda Y, Sakamoto Y, Zhang ZH, Hirota K, Miyake A . 1995 Endocrinol. 136: 2082–2087

  • Okamoto T, Schlegel A, Scherer PE, Lisanti MP . 1998 J. Biol. Chem. 273: 5419–5422

  • Ostrom RS, Violin JD, Coleman S, Insel PA . 2000 Mol. Pharmacol. 57: 1075–1079

  • Pierce KL, Luttrell LM, Lefkowitz RJ . 2001 Oncogene 20: 1532–1539

  • Rybin VO, Xu X, Lisanti MP, Steinberg SF . 2000 J. Biol. Chem. 275: 41447–41457

  • Scheiffele P, Verkade P, Fra AM, Virta H, Simons K, Ikonen E . 1998 J. Cell Biol. 140: 795–806

  • Simons K, Toomre D . 2000 Nature Rev. Mol. Cell. Biol. 1: 31–39

  • Strakova Z, Copland JA, Lolait SJ, Soloff MS . 1998 Am. J. Physiol. 274: (Suppl E) 634–641

  • Strakova Z, Soloff MS . 1997 Am. J. Physiol. 272: (Suppl E) 870–876

  • Thibonnier M, Auzan C, Madhun Z, Wilkins P, Berti-Mattera L, Clauser E . 1994 J. Biol. Chem. 269: 3304–3310

Download references

Acknowledgements

We thank Dr V Pliska helpfully commenting on the binding assays and Prof N Borgese for critically reading the manuscript. This work was supported by a grant from the AIRC (Italian Association for Cancer Research) to B Chini and a MURST grant (Cofin 2000) to M Parenti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bice Chini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzzi, F., Zanchetta, D., Cassoni, P. et al. Localization of the human oxytocin receptor in caveolin-1 enriched domains turns the receptor-mediated inhibition of cell growth into a proliferative response. Oncogene 21, 1658–1667 (2002). https://doi.org/10.1038/sj.onc.1205219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205219

Keywords

This article is cited by

Search

Quick links