Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Evidence that a burst of DNA depurination in SENCAR mouse skin induces error-prone repair and forms mutations in the H-ras gene

Abstract

Treatment of SENCAR mouse skin with dibenzo[a,l]pyrene results in abundant formation of abasic sites that undergo error-prone excision repair, forming oncogenic H-ras mutations in the early preneoplastic period. To examine whether the abundance of abasic sites causes repair infidelity, we treated SENCAR mouse skin with estradiol-3,4-quinone (E2-3,4-Q) and determined adduct levels 1 h after treatment, as well as mutation spectra in the H-ras gene between 6 h and 3 days after treatment. E2-3,4-Q formed predominantly (99%) the rapidly-depurinating 4-hydroxy estradiol (4-OHE2)-1-N3Ade adduct and the slower-depurinating 4-OHE2-1-N7Gua adduct. Between 6 h and 3 days, E2-3,4-Q induced abundant A to G mutations in H-ras DNA, frequently in the context of a 3′-G residue. Using a T.G-DNA glycosylase (TDG)-PCR assay, we determined that the early A to G mutations (6 and 12 h) were in the form of G.T heteroduplexes, suggesting misrepair at A-specific depurination sites. Since G-specific mutations were infrequent in the spectra, it appears that the slow rate of depurination of the N7Gua adducts during active repair may not generate a threshold level of G-specific abasic sites to affect repair fidelity. These results also suggest that E2-3,4-Q, a suspected endogenous carcinogen, is a genotoxic compound and could cause mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Atamna H, Cheung I, Ames BN . 2000 Proc. Natl. Acad. Sci. USA 97: 686–691

  • Berdal KG, Johansen RF, Seeberg E . 1998 EMBO J. 17: 363–367

  • Bowden GT, Shapas, BG, Boutwell RK . 1974 Chem-Biol. Interactions 8: 379–394

  • Braithwaite E, Wu X, Wang Z . 1998 Carcinogenesis 19: 1239–1246

  • Cavalieri EL, Rogan EG . 1998 The handbook of environmental chemistry, Vol. 3J. Nelson, AH (ed.) Springer-Verlag: Heidelberg pp 81–117

  • Cavalieri EL, Stack DE, Devanesan PD, Todorovic R, Dwivedy I, Higginbotham S, Johansson SL, Patil KD, Gross ML, Gooden JK, Ramanathan R, Cerny RL, Rogan EG . 1997 Proc. Natl. Acad. Sci. USA 94: 10937–10942

  • Chakravarti D, Ibeanu GC, Tano K, Mitra S . 1991 J. Biol. Chem. 266: 15710–15715

  • Chakravarti D, Pelling JC, Cavalieri EL, Rogan EG . 1995 Proc. Natl. Acad. Sci. USA 92: 10422–10426

  • Chakravarti D, Cavalieri EL, Rogan EG . 1998a DNA Cell Biol. 17: 529–539

  • Chakravarti D, Mailander P, Franzen J, Higginbotham S, Cavalieri EL, Rogan EG . 1998b Oncogene 16: 3203–3210

  • Chakravarti D, Mailander P, Cavalieri EL, Rogan EG . 2000 Mutat. Res. 456: 17–32

  • Chen L, Devanesan PD, Higginbotham S, Ariese F, Jankowiak R, Small GJ, Rogan EG, Cavalieri EL . 1996 Chem. Res. Toxicol. 9: 897–903

  • Choi D, Roth RB, Liu T, Geacintov NE, Scicchitano DA . 1996 J. Mol. Biol. 264: 213–219

  • Coquerelle T, Dosch J, Kaina B . 1995 Mutat. Res. 336: 9–17

  • Dean SW, Coates A, Brooks TM, Burlinson B . 1998 Mutagenesis 13: 515–518

  • Dwivedy I, Devanesan P, Cremonesi P, Rogan E, Cavalieri E . 1992 Chem. Res. Toxicol. 5: 828–833

  • Fromenty B, Demeilliers C, Mansouri A, Pessayre D . 2000 Nucleic Acids Res. 28: e50

  • Gill RD, Butterworth BE, Nettikumara AN, DiGiovanni J . 1991 Environ. Mol. Mutagen. 18: 200–206

  • Glassner BJ, Rasmussen LJ, Najarian MT, Posnick LM, Samson LD . 1998 Proc. Natl. Acad. Sci. USA 95: 9997–10002

  • Gorelick NJ, Andrews JL, Gu M, Glickman BW . 1995 Mol. Carcinog. 14: 53–62

  • Ibeanu G, Hartenstein B, Dunn WC, Chang L-Y, Hofmann E, Coquerelle T, Mitra S, Kaina B . 1992 Carcinogenesis 13: 1989–1995

  • Jankowiak R, Ariese F, Hewer A, Luch A, Zamzow D, Hughes NC, Phillips D, Seidel A, Platt KL, Oesch F, Small GJ . 1998a Chem. Res. Toxicol. 11: 674–685

  • Jankowiak R, Zamzow D, Stack DE, Todorovic R, Cavalieri EL, Small GJ . 1998b Chem. Res. Toxicol. 11: 1339–1345

  • Kaufmann WK . 1995 Cancer Metastasis Rev. 14: 31–41

  • Klugland A, Fairbairn L, Watson AJ, Margison GP, Seeberg E . 1992 EMBO J. 11: 4439–4444

  • Kong LY, Szaniszlo P, Albrecht T, Liehr JG . 2000 Int. J. Oncol. 17: 1141–1149

  • Lau AY, Wyatt MD, Glassner BJ, Samson LD, Ellenberger T . 2000 Proc. Natl. Acad. Sci. USA 97: 13573–13578

  • Li K-M, Devanesan PD, Rogan EG, Cavalieri EL . 1998 Proc. Am. Assoc. Cancer Res. 39: 636

  • Li K-M, Liang W, Devanesan PD, Rogan EG, Cavalieri EL . 1999 Proc. Am. Assoc. Cancer Res. 40: 46

  • Lindahl T . 1993 Nature 362: 709–715

  • Lindahl T . 2000 Mutat. Res. 462: 129–135

  • Lindahl T, Karlstrom O . 1973 Biochemistry 12: 5151–5154

  • Lindahl T, Nyberg B . 1972 Biochemistry, 11: 3610–3618

  • Maher VM, McCormick JJ . 1987 Mechanisms of Cellular Transformation by Carcinogenic Agents. Grunberger D and Groff SP (eds) Pergamon Press: New York pp 135–149

  • Moriya M, Spiegel S, Fernandes A, Amin S, Liu T, Geacintov N, Grollman AP . 1996 Biochemistry 35: 16646–16651

  • Nakamura J, Walker VE, Upton PB, Chiang S-Y, Kow Y, Swenberg JA . 1998 Cancer Res. 58: 222–225

  • Nakamura J, Swenberg JA . 1999 Cancer Res. 59: 2522–2526

  • NIH . 1981 NIH Guidelines for the Laboratory Use of Chemical Carcinogens US Government Printing Office: Washington, DC

    Google Scholar 

  • Paules RS, Cordeiro-Stone M, Mass MJ, Poirier MC, Yuspa SH, Kaufman DG . 1988 Proc. Natl. Acad. Sci. USA 85: 2176–2180

  • Robertson KA, Bullock HA, Xu Y, Tritt R, Zimmerman E, Ulbright TM, Foster RS, Einhorn LH, Kelley MR . 2001 Cancer Res. 61: 2220–2225

  • Rogan EG, Devanesan PD, RamaKrishna NVS, Higginbotham S, Padmavathi NS, Chapman K, Cavalieri EL, Jeong H, Jankowiak R, Small GJ . 1993 Chem. Res. Toxicol. 6: 356–363

  • Sawyer TW, Gill RD, Smith-Oliver T, Butterworth BE, DiGiovanni J . 1988 Carcinogenesis 9: 1197–1202

  • Skopek TR, Kort KL, Marino DR, Mittal LV, Umbenhauer DR, Laws GM, Adams SP . 1996 Environ. Mol. Mutagen. 28: 376–384

  • Slaga TJ, Bowden GT, Shapas, BG, Boutwell RK . 1973 Cancer Res. 33: 769–776

  • Slaga TJ, Bowden GT, Shapas BG, Boutwell RK . 1974 Cancer Res. 34: 771–777

  • Stack DE, Cavalieri EL, Rogan EG . 1998 Adv. Pharmacol. 42: 833–836

  • Terashima I, Suzuki N, Shibutani S . 2001 Biochemistry 40: 166–172

  • Tsutsui T, Tamura Y, Yagi E, Barrett JC . 2000 Int. J. Cancer 86: 8–14

  • Watanabe M, Maher VM, McCormick JJ . 1985 Mutat. Res. 146: 285–294

Download references

Acknowledgements

This research was supported by US Public Health Service grant P01 CA49210. Core support at the Eppley Institute was funded by NCI Laboratory Cancer Research Support (Core) grant CA 36727. The Washington University Mass Spectrometry laboratory is supported by the National Centers for Research Resources of the NIH (Grant No. P41 RR 00954).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhrubajyoti Chakravarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakravarti, D., Mailander, P., Li, KM. et al. Evidence that a burst of DNA depurination in SENCAR mouse skin induces error-prone repair and forms mutations in the H-ras gene. Oncogene 20, 7945–7953 (2001). https://doi.org/10.1038/sj.onc.1204969

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204969

Keywords

This article is cited by

Search

Quick links