Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Report
  • Published:

p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements

Abstract

The human p53 protein acts mainly as a stress inducible transcription factor transactivating several genes involved in cell cycle arrest (e.g. p21) or apoptosis (e.g. Bax, PIG3). Roughly half of all human tumours contains p53 missense mutations. Virtually all tumour-derived p53 mutants are unable to activate Bax transcription but some retain the ability to activate p21 transcription. Identification of these mutants may have valuable clinical implications. We have determined the transactivation ability of 77 p53 mutants using reporter yeast strains containing a p53-regulated ADE2 gene whose promoter is regulated by p53 responsive elements derived from the regulatory region of the p21, Bax and PIG3 genes. We also assessed the influence of temperature on transactivation. Our results indicate that a significant proportion of mutants [16/77 (21%); 10/64 (16%) considering only tumour-derived mutants] are transcriptionally active, especially with the p21 promoter. Discriminant mutants preferentially affect less conserved (P<0.04, Fisher's exact test), more rarely mutated (P<0.006, Fisher's exact test) amino acids. Temperature sensitivity is frequently observed, but is more common among discriminant than non-discriminant mutants (P<0.003, Fisher's exact test). Finally, we extended the analysis to a group of mutants isolated in BRCA-associated tumours that surprisingly were indistinguishable from wild type in standard transcription, growth suppression and apoptosis assays in human cells, but showed gain of function in transformation assays. The incidence of transcriptionally active mutations among this group was significantly higher than in the panel of mutants studied previously (P<0.001, Fisher's exact test). Since it is not possible to predict the behaviour of a mutant from first principles, we propose that the yeast assay be used to compile a functional p53 database and fill the gap between the biophysical, pharmacological and clinical fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Aas T, Borresen AL, Geisler S, Smith-Soresen B, Johnsen H, Varhaug JE, Akslen LA, Lonning PE . 1996 Nature Med. 2: 811–814

  • Borresen AL, Andersen TI, Eyfjord JE, Cornelis RS, Thorlacius S, Borg A, Johansson U, Theillet C, Scherneck S, Hartman S, Cornelisse CJ, Hovig E, Devilee P . 1995 Genes. Chromosom. Cancer 14: 71–75

  • Bullock AN, Henckel J, Fersht AR . 2000 Oncogene 19: 1245–1256

  • Campomenosi P, Fronza G, Ottaggio L, Roncella S, Inga A, Bogliolo M, Monti P, Assereto P, Moro F, Cutrona G, Bozzo S, Chiorazzi N, Abbondandolo A, Ferrarini M . 1997 Int. J. Cancer 73: 816–821

  • Chappuis PO, Estreicher A, Dieterich B, Bonnefoi H, Otter M, Sappino A-P, Iggo R . 1999 Int. J. Cancer 84: 587–593

  • Cho Y, Gorina S, Jeffrey PD, Pavletich NP . 1994 Science 265: 346–355

  • Crook T, Marston NJ, Sara EA, Vousden KH . 1994 Cell 79: 817–827

  • Duddy PM, Hanby AM, Barnes DM, Camplejohn RS . 2000 J. Mol. Diag. 2: 139–144

  • Flaman JM, Frebourg T, Moreau V, Charbonnier F, Martin C, Chappuis P, Sappino A-P, Limacher J-M, Bron L, Benhattar J, Tada M, van Meir EG, Estreicher A, Iggo R . 1995 Proc. Natl. Acad. Sci. USA 92: 3963–3967

  • Flaman JM, Robert V, Lenglet S, Moreau V, Iggo R, Frebourg T . 1998 Oncogene 16: 1369–1372

  • Foster BA, Coffey HA, Morin MJ, Rastinejad F . 1999 Science 286: 2507–2510

  • Freeman J, Schmidt S, Scharer E, Iggo R . 1994 EMBO J. 13: 5393–5400

  • Friedlander P, Legros Y, Soussi T, Prives C . 1996 J. Biol. Chem. 271: 25468–25478

  • Giaccia AJ, Kastan MB . 1998 Genes Dev. 12: 2973–2983

  • Hernandez-Boussard T, Rodriguez-Tome P, Montesano R, Hainaut P . 1999 Hum. Mutat. 14: 1–8

  • Inga A, Iannone R, Monti P, Molina F, Bolognesi M, Abbondandolo A, Iggo R, Fronza G . 1997 Oncogene 14: 1307–1313

  • Inga A, Scott G, Monti P, Aprile A, Abbondandolo A, Burns PA, Fronza G . 1998 Carcinogenesis 19: 741–746

  • Inga A, Chen FX, Monti P, Aprile A, Campomenosi P, Menichini P, Ottaggio L, Viaggi S, Abbondandolo A, Gold B, Fronza G . 1999 Cancer Res. 59: 689–695

  • Ishioka C, Englert C, Winge P, Yan Y, Engelstein M, Friend SH . 1995 Oncogene 10: 1485–1492

  • Kelly JD, Inga A, Chen FX, Dande P, Shah D, Monti P, Aprile A, Burns PA, Scott G, Abbondandolo A, Gold B, Fronza G . 1999 J. Biol. Chem. 274: 18327–18334

  • Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B . 1991 Science 252: 1708–1711

  • Ko LJ, Prives C . 1996 Genes Dev. 10: 1054–1072

  • Levine AJ . 1997 Cell 88: 323–331

  • Ludwig RL, Bates S, Vousden KH . 1996 Mol. Cell. Biol. 16: 4952–4960

  • Monti P, Inga A, Aprile A, Campomenosi P, Menichini P, Ottaggio L, Viaggi S, Ghigliotti G, Abbondandolo A, Fronza G . 2000 Mutagenesis 15: 127–132

  • Ory K, Legros Y, Auguin C, Soussi T . 1994 EMBO J. 13: 3496–3504

  • Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B . 1997 Nature 389: 300–305

  • Prives C, Hall PA . 1999 J Pathol. 187: 112–126

  • Robert V, Michel P, Flaman JM, Chiron A, Martin C, Charbonnier F, Paillot B, Frebourg T . 2000 Carcinogenesis 21: 563–565

  • Rowan S, Ludwig RL, Haupt Y, Bates S, Lu X, Oren M, Vousden KH . 1996 EMBO J. 15: 827–838

  • Saller E, Tom E, Brunori M, Otter M, Estreicher A, Mack DH, Iggo R . 1999 EMBO J. 18: 4424–4437

  • Smith PD, Crossland S, Parker G, Osin P, Brooks L, Waller J, Philp E, Crompton MR, Gusterson BA, Allday MJ, Crook T . 1999 Oncogene 18: 2451–2459

  • Soussi T, May P . 1996 J. Mol. Biol. 260: 623–637

  • Vogelstein B, Lane D, Levine AJ . 2000 Nature 408: 307–310

  • Waldman T, Zhang Y, Dillehay L, Yu J, Kinzler K, Vogelstein B, Williams J . 1997 Nat. Med. 3: 1034–1036

  • Walker DR, Bond JP, Tarone RE, Harris CC, Makalowski W, Boguski MS, Greenblatt MS . 1999 Oncogene 18: 211–218

  • Wang Y, Prives C . 1995 Nature 376: 88–91

  • Waridel F, Esteicher A, Bron L, Flaman JM, Fontolliet C, Monnier P, Frebourg T, Iggo R . 1997 Oncogene 14: 163–169

Download references

Acknowledgements

P Monti is supported by a ‘Fondazione Italiana per la Ricerca sul Cancro’ (FIRC) fellowship. This work was partially supported by the Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST), by Associazione Italiana per la Ricerca sul Cancro (AIRC), by EC contract No. 17225-2000-12 F1ED ISP IT, and by National Institute of Health (grant R01 CA29088).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campomenosi, P., Monti, P., Aprile, A. et al. p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements. Oncogene 20, 3573–3579 (2001). https://doi.org/10.1038/sj.onc.1204468

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204468

Keywords

This article is cited by

Search

Quick links