Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Activation of the p21WAF1/CIP1 promoter independent of p53 by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) through the Sp1 sites

Abstract

Suberoylanilide hydroxamic acid (SAHA) is a novel histone deacetylase inhibitor with high potency in inducing differentiation of cultured murine erythroleukemia cells. We have recently demonstrated that SAHA induces cell cycle arrest and apoptosis in human breast cancer cells, accompanied by up-regulation of the cyclin-dependent kinase inhibitor, p21WAF1/CIP1, via a p53-independent mechanism. In this study, we used p21 gene expression as a model system to elucidate the molecular mechanism(s) underlying SAHA-mediated gene activation. Treatment of human breast cancer cell line MCF7 cells with SAHA induced p21 mRNA as a consequence of an immediate-early gene activation. Moreover, SAHA activated the p21 promoter primarily through two Sp1 sites located at −82 and −69 relative to the transcription start site. Furthermore, Sp1 and Sp3 proteins were the major factors binding to the Sp1 site of the p21 promoter. However, SAHA did not alter their DNA binding activities, suggesting that SAHA mediates p21 promoter activity by a mechanism other than altering the DNA binding activities of Sp1 and Sp3. Further studies using the GAL4 luciferase assay system demonstrated that both GAL4-Sp1 and GAL4-Sp3 fusion proteins supported SAHA-mediated gene activation from a promoter driven by five GAL4 DNA binding sites, and that GAL4-Sp3 fusion protein was suppressive in the absence of SAHA treatment. Collectively, our results suggest that SAHA activates the p21 promoter through the Sp1 sites, and that both Sp1 and Sp3 proteins can mediate SAHA-induced gene activation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adnane J, Bizouarn FA, Qian YM, Hamilton AD and Sebti SM. . 1998 Mol. Cell. Biol. 18: 6962–6970.

  • Alland L, Muhle R, Hou H, Potes J, Chin L, Schreiber-Agus N and DePinho RA. . 1997 Nature 387: 49–55.

  • Biggs JR, Kudlow JE and Kraft AS. . 1996 J. Biol. Chem. 271: 901–906.

  • Billon N, Carlisi D, Datto MB, van GL, Watt A, Wang XF and Rudkin BB. . 1999 Oncogene 18: 2872–2882.

  • Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ and Kouzarides T. . 1998 Nature 391: 597–601.

  • Cohen LA, Amin S, Marks PA, Rifkind RA, Desai D and Richon VM. . 1999 Anticancer Res. 19: 4999–5005.

  • Datto MB, Yu Y and Wang XF. . 1995 J. Biol. Chem. 270: 28623–28628.

  • Desai D, EI-Bayoumy K and Amin S. . 1999 Proc. AACR 40: 2396, abstr. 2362.

  • Dignam JD, Lebovitz RM and Roeder RG. . 1983 Nucleic Acids Res. 11: 1475–1489.

  • Doetzlhofer A, Rotheneder H, Lagger G, Koranda M, Kurtev V, Brosch G, Wintersberger E and Seiser C. . 1999 Mol. Cell. Biol. 19: 5504–5511.

  • Emiliani S, Fischle W, Van Lint C, Al-Abed Y and Verdin E. . 1998 Proc. Natl. Acad. Sci. USA 95: 2795–2800.

  • Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R and Pavletich NP. . 1999 Nature 401: 188–193.

  • Hagen G, Muller S, Beato M and Suske G. . 1994 EMBO J. 13: 3843–3851.

  • Hassig CA, Fleischer TC, Billin AN, Schreiber SL and Ayer DE. . 1997 Cell 89: 341–347.

  • Heinzel T, Lavinsky RM, Mullen TM, Soderstrom M, Laherty CD, Torchia J, Yang WM, Brard G, Ngo SD, Davie JR, Seto E, Eisenman RN, Rose DW, Glass CK and Rosenfeld MG. . 1997 Nature 387: 43–48.

  • Huang L and Pardee AB. . 2000 Mol. Med. 6: 849–866.

  • Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J and Wolffe AP. . 1998 Nature Genet. 19: 187–191.

  • Kennett SB, Udvadia AJ and Horowitz JM. . 1997 Nucleic Acids Res. 25: 3110–3117.

  • Kuo MH and Allis CD. . 1998 Bioessays 20: 615–626.

  • Laherty CD, Yang WM, Sun JM, Davie JR, Seto E and Eisenman RN. . 1997 Cell 89: 349–356.

  • Li JM, Datto MB, Shen X, Hu PP, Yu Y and Wang XF. . 1998 Nucleic Acids Res. 26: 2449–2456.

  • Magnaghi JL, Groisman R, Naguibneva I, Robin P, Lorain S, Le VJ, Troalen F, Trouche D and Harel BA. . 1998 Nature 391: 601–605.

  • Majello B, De LP, Hagen G, Suske G and Lania L. . 1994 Nucleic Acids Res. 22: 4914–4921.

  • Moustakas A and Kardassis D. . 1998 Proc. Natl. Acad. Sci. USA 95: 6733–6738.

  • Nagy L, Kao HY, Chakravarti D, Lin RJ, Hassig CA, Ayer DE, Schreiber SL and Evans RM. . 1997 Cell 89: 373–380.

  • Nakano K, Mizuno T, Sowa Y, Orita T, Yoshino T, Okuyama Y, Fujita T, Ohtani FN, Matsukawa Y, Tokino T, Yamagishi H, Oka T, Nomura H and Sakai T. . 1997 J. Biol. Chem. 272: 22199–22206.

  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN and Bird A. . 1998 Nature 393: 386–389.

  • Owen GI, Richer JK, Tung L, Takimoto G and Horwitz KB. . 1998 J. Biol. Chem. 273: 10696–10701.

  • Pazin MJ and Kadonaga JT. . 1997 Cell 89: 325–328.

  • Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA and Marks PA. . 1998 Proc. Natl. Acad. Sci. USA 95: 3003–3007.

  • Richon VM, Webb Y, Merger R, Sheppard T, Jursic B, Ngo L, Civoli F, Breslow R, Rifkind RA and Marks PA. . 1996 Proc. Natl. Acad. Sci. USA 93: 5705–5708.

  • Sowa Y, Orita T, Minamikawa HS, Mizuno T, Nomura H and Sakai T. . 1999 Cancer Res. 59: 4266–4270.

  • Sowa Y, Orita T, Minamikawa S, Nakano K, Mizuno T, Nomura H and Sakai T. . 1997 Biochem. Biophy. Res. Commun. 241: 142–150.

  • Struhl K. . 1998 Genes Dev. 12: 599–606.

  • Suzuki T, Kimura A, Nagai R and Horikoshi M. . 2000 Genes Cells 5: 29–41.

  • Torchia J, Glass C and Rosenfeld MG. . 1998 Curr. Opin. Cell Biol. 10: 373–383.

  • Vrana JA, Decker RH, Johnson CR, Wang Z, Jarvis WD, Richon VM, Ehinger M, Fisher PB and Grant S. . 1999 Oncogene 18: 7016–7025.

  • Wolffe AP. . 1997 Nature 387: 16–17.

  • Xiao H, Hasegawa T and Isobe K. . 2000 J. Biol. Chem. 275: 1371–1376.

  • Xiao HY, Hasegawa T and Isobe K. . 1999 J. Cell. Biochem. 73: 291–302.

  • Yang WM, Inouye C, Zeng Y, Bearss D and Seto E. . 1996 Proc. Natl. Acad. Sci. USA 93: 12845–12850.

  • Yoshida M, Kijima M, Akita M and Beppu T. . 1990 J. Biol. Chem. 265: 17174–17179.

Download references

Acknowledgements

We thank Drs Victoria M Richon and Paul A Marks for generously providing SAHA, and Dr Debajit K Biswas for critical reading of the manuscript. This work was supported by an NIH grant RO1CA61253 (to AB Pardee).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Sowa, Y., Sakai, T. et al. Activation of the p21WAF1/CIP1 promoter independent of p53 by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) through the Sp1 sites. Oncogene 19, 5712–5719 (2000). https://doi.org/10.1038/sj.onc.1203963

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1203963

Keywords

This article is cited by

Search

Quick links