Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Rit, a non-lipid-modified Ras-related protein, transforms NIH3T3 cells without activating the ERK, JNK, p38 MAPK or PI3K/Akt pathways

Abstract

The biological functions of Rit (Ras-like protein in tissues) and Rin (Ras-like protein in neurons), members of a novel branch of Ras-related GTP-binding proteins that are 50% identical to Ras, have not been characterized. Therefore, we assessed their activity in growth control, transformation and signaling. NIH cells stably expressing a constitutively activated mutant of Rit [Rit(79L)] (analogous to the oncogenic mutant H-Ras(61L)) demonstrated strong growth transformation, proliferating rapidly in low serum and forming colonies in soft agar and tumors in nude mice. Although Rit(79L) alone did not promote morphologically transformed foci, it cooperated with both Raf and Rho A to form Rac/Rho-like foci. Rin [Rin(78L)] cooperated only with Raf. Rit(79L) but not Rin(78L) stimulated transcription from luciferase reporter constructs regulated by SRF, NF-κB, Elk-1 and Jun. However, neither activated ERK, JNK or p38, or PI3-K/Akt kinases in immune complex kinase assays. Interestingly, although Rit lacks any known recognition signal for C-terminal lipidation, Rit-transformed cell growth and survival in low serum is dependent on a farnesylated protein, as treatment with farnesyltransferase inhibitors caused apoptosis. Rin cooperated with Raf in focus assays but did not otherwise function in these assays, perhaps due to a lack of appropriate effector pathways in NIH3T3 fibroblasts for this neural-specific Ras family member. In summary, although Rit shares most core effector domain residues with Ras, our results suggest that Rit uses novel effector pathways to regulate proliferation and transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 6
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bos JL. . 1997 Biochim Biophys Acta 1333: M19–31.

  • Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ and Der CJ. . 1998 Oncogene 17: 1395–1413.

  • Cepko CL, Roberts B and Mulligan RC. . 1984 Cell 37: 1053–1062.

  • Chuang TH, Hahn KM, Lee JD, Danley DE, and Bokoch GM. . 1997 Mol. Biol. Cell 8: 1687–1698.

  • Clark GJ, Cox AD, Graham SM and Der CJ. . 1995 Methods Enzymol. 255: 395–412.

  • Cox AD, Brtva TR, Lowe DG and Der CJ. . 1994 Oncogene 9: 3281–3288.

  • Cox AD, and Der CJ. . 1994 Methods Enzymol. 238: 277–294.

  • Cox AD, and Der CJ. . 1997 Biochim. Biophys. Acta 1333: F51–F71.

  • Cox AD and Der CJ. . 1992 Curr. Opin Cell Biol. 4: 1008–1016.

  • Cox AD, Hisaka MM, Buss JE and Der CJ. . 1992 Mol. Cell. Biol. 12: 2606–2615.

  • Cox AD, Solski PA, Jordan JD and Der CJ. . 1995 Methods Enzymol. 255: 195–220.

  • Davis RJ. . 1995 Mol. Reprod. Dev. 42: 459–467.

  • Downward J. . 1997 Curr. Biol. 7: R258–260.

  • Du W, Liu A and Prendergast GC. . 1999 Cancer Res. 59: 4208–4212.

  • Feig LA and Cooper GM. . 1988 Mol. Cell Biol. 8: 3235–3243.

  • Fiordalisi JJ, Johnson II RL, Ulku AS and Cox AD. . 2000 Methods Enzymol. 332: In press.

  • Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR and Tsichlis PN. . 1995 Cell 81: 727–736.

  • Graham SM, Cox AD, Drivas G, Rush MG, D'Eustachio P, and Der CJ. . 1994 Mol. Cell. Biol. 14: 4108–4115.

  • Graham SM, Vojtek AB, Huff SY, Cox AD, Clark GJ, Cooper JA and Der CJ. . 1996 Mol. Cell Biol. 16: 6132–6140.

  • Hancock JF, Paterson H and Marshall CJ. . 1990 Cell 63: 133–139.

  • Hauser CA, Westwick JK and Quilliam LA. . 1995 Methods Enzymol. 255: 412–426.

  • Huff SY, Quilliam LA, Cox AD and Der CJ. . 1997 Oncogene 14: 133–143.

  • Jiang K, Coppola D, Crespo NC, Nicosia SV, Hamilton AD, Sebti SM and Cheng JQ. . 2000 Mol. Cell Biol. 20: 139–148.

  • Keely PJ, Rusyn EV, Cox AD and Parise LV. . 1999 J. Cell Biol. 145: 1077–1088.

  • Khosravi-Far R, Solski PA, Clark GJ, Kinch MS and Der CJ. . 1995 Mol. Cell Biol. 15: 6443–6453.

  • Khosravi-Far R, White MA, Westwick JK, Solski PA, Chrzanowska-Wodnicka M, Van Aelst L, Wigler MH and Der CJ. . 1996 Mol. Cell Biol. 16: 3923–3933.

  • Khwaja A, Lehmann K, Marte BM and Downward J. . 1998 J. Biol. Chem. 273: 18793–18801.

  • Kodaki T, Woscholski R, Hallberg B, Rodriguez-Viciana P, Downward J and Parker PJ. . 1994 Curr. Biol. 4: 798–806.

  • Kohl NE, Omer CA, Conner MW, Anthony NJ, Davide JP, deSolms SJ, Giuliani EA, Gomez RP, Graham SL, Hamilton K, Handt LK, Hartman GD, Koblan KS, Kral AM, Miller PJ, Mosser SD, O'Neill TJ, Rands E, Schaber MD, Gibbs JB and Oliff A. . 1995 Nature Medicine 1: 792–797.

  • Lebowitz PF, Sakamuro D and Prendergast GC. . 1997 Cancer Res. 57: 708–713.

  • Lee CHJ, Della NG, Chew CE and Zack DJ. . 1996 J. Neurosci. 16: 6784–6794.

  • Lerner EC, Qian Y, Blaskovich MA, Fossum RD, Vogt A, Sun J, Cox AD, Der CJ, Hamilton AD and Sebti SM. . 1995 J. Biol. Chem. 270: 26802–26806.

  • Liu A-X, Du W, Liu JP, Jessell TM and Prendergast GC. . 2000 Mol. Cell Biol. 20: 6105–6113.

  • Malumbres M and Pellicer A. . 1998 Front Biosci. 3:: d887–912.

  • Marshall C. . 1999 Curr. Opin. Cell Biol. 11: 732–736.

  • Marshall CJ. . 1996 Curr. Opin. Cell Biol. 8: 197–204.

  • Marte BM, Rodriguez-Viciana P, Wennstrom S, Warne PH and Downward J. . 1997 Curr. Biol. 7: 63–70.

  • Mattingly RR, Sorisky A, Brann MR and Macara IG. . 1994 Mol. Cell Biol. 14: 7943–7952.

  • Murai H, Ikeda M, Kishida S, Ishida O, Okazaki-Kishida M, Matsuura Y and Kikuchi A. . 1997 J. Biol. Chem. 272: 10483–10490.

  • Okazaki M, Kishida S, Hinoi T, Hasegawa T, Tamada M, Kataoka T and Kikuchi A. . 1997 Oncogene 14: 515–521.

  • Oliff A. . 1999 Biochim. Biophys. Acta 1423: C19–30.

  • Osada M, Tolkacheva T, Li W, Chan TO, Tsichlis PN, Saez R, Kimmelman AC and Chan AM. . 1999 Mol. Cell Biol. 19: 6333–6344.

  • Peterson SN, Trabalzini L, Brtva TR, Fischer T, Altschuler DL, Martelli P, Lapetina EG, Der CJ and White 2nd GC. . 1996 J. Biol. Chem. 271: 29903–29908.

  • Qiu, RG, Chen J, Kirn D, McCormick F and Symons M. . 1995a Nature 374: 457–459.

  • Qiu RG, Chen J, McCormick F and Symons M. . 1995b Proc. Natl. Acad. Sci. USA 92: 11781–11785.

  • Reuther GW and Der CJ. . 2000 Curr. Opin Cell Biol. 12: 157–165.

  • Rosario M, Paterson HF and Marshall CJ. . 1999 EMBO J. 18: 1270–1279.

  • Saez R, Chan AM, Miki T and Aaronson SA. . 1994 Oncogene 9: 2977–2982.

  • Sahai E, Alberts AS and Treisman R. . 1998 EMBO J. 17: 1350–1361.

  • Shao H, Kadono-Okuda K, Finlin BS and Andres DA. . 1999 Arch Biochem. Biophys. 371: 207–219.

  • Shao H and Andres DA. . 2000 J. Biol. Chem. 275: 26914–26924.

  • Stanton Jr VP, Nichols DW, Laudano AP and Cooper GM. . 1989 Mol. Cell Biol., 9: 639–647.

  • Suzuki N, Urano J and Tamanoi F. . 1998 Proc. Natl. Acad. Sci. USA 95: 15356–15361.

  • Webb CP, Van Aelst L, Wigler MH and Vande Woude GF. . 1998 Proc. Natl. Acad. Sci. USA 95: 8773–8778.

  • Wes PD, Yu M and Montell C. . 1996 EMBO J. 15: 5839–5848.

  • Westwick JK, Lambert QT, Clark GJ, Symons M, Van Aelst L, Pestell RG and Der CJ. . 1997 Mol. Cell Biol. 17: 1324–1335.

  • Wolthuis RM, de Ruiter ND, Cool RH and Bos JL. . 1997 EMBO J. 16: 6748–6761.

  • Yen A, Williams M, Platko JD, Der C and Hisaka M. . 1994 Eur. J. Cell Biol. 65: 103–113.

  • Zhang Z, Vuori K, Wang H, Reed JC and Ruoslahti E. . 1996 Cell 85: 61–69.

  • Zohar M, Teramoto H, Katz BZ, Yamada KM and Gutkind JS. . 1998 Oncogene 17: 991–998.

Download references

Acknowledgements

We thank C Der, J Downward, M Karin and M Weber for plasmids, J Gibbs, A Hamilton, A Oliff and S Sebti for farnesyltransferase inhibitors and M Symons for microinjection. Our research was supported by NIH grants to ADC (CA67771 and CA70692) and DAA (EY11231).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusyn, E., Reynolds, E., Shao, H. et al. Rit, a non-lipid-modified Ras-related protein, transforms NIH3T3 cells without activating the ERK, JNK, p38 MAPK or PI3K/Akt pathways. Oncogene 19, 4685–4694 (2000). https://doi.org/10.1038/sj.onc.1203836

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1203836

Keywords

This article is cited by

Search

Quick links