Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Polymorphisms of angiotensinogen and angiotensin-converting enzyme associated with lower extremity arterial disease in the Health, Aging and Body Composition study

Abstract

The role of renin–angiotensin system (RAS) genes on the risk of lower extremity arterial disease (LEAD) in elderly people remains unclear. We assessed the relationship of genetic polymorphisms in RAS: G-6A, T174M and M235T of the angiotensinogen (AGT) gene, and the angiotensin-converting enzyme insertion/deletion (ACE_I/D) variant to the risk of LEAD in the Health, Aging and Body Composition (Health ABC) Study. This analysis included 1228 black and 1306 white men and women whose age ranged between 70 and 79 years at the study enrollment. LEAD was defined as ankle-arm index (AAI) <0.9. Genotype–phenotype associations were estimated by regression analyses with and without adjustment for established cardiovascular disease (CVD) risk factors. The proportion of LEAD was significantly higher in black (21.1%) than that in white elderly people (10.1%, P<0.0001). The distribution of AGT polymorphisms was also significantly different between black and white participants. There was no statistically significant association between the selected RAS genetic variants and LEAD after adjustment for age, antihypertensive medications, lipid-lowering medication, pack-year smoking, body mass index, low-density lipoprotein cholesterol, and prevalent diabetes and coronary heart disease. However, A-T haplotype of G-6A and M235T interacting with homozygous ACE_II (β=−1.07, P=0.006) and with ACE inhibitors (β=−1.03, P=0.01) significantly decreased the risk of LEAD in white but not in black participants after adjustment for the selected CVD risk factors. In conclusion, the study observed a gene–gene and gene–drug interaction for LEAD in the white elderly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Clauser E, Gaillard I, Wei L, Corvol P . Regulation of angiotensinogen gene. Am J Hypertens 1989; 2: 403–410.

    Article  CAS  Google Scholar 

  2. Nishimura H, Buikema H, Baltatu O, Ganten D, Urata H . Functional evidence for alternative ANG II-forming pathways in hamster cardiovascular system. Am J Physiol 1998; 275: H1307–H1312.

    CAS  PubMed  Google Scholar 

  3. Urata H, Nishimura H, Ganten D . Chymase-dependent angiotensin II forming systems in humans. Am J Hypertens 1996; 9: 277–284.

    Article  CAS  Google Scholar 

  4. Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A et al. Molecular basis of human hypertension: role of angiotensinogen. Cell 1992; 71: 169–180.

    Article  CAS  Google Scholar 

  5. Jeunemaitre X, Inoue I, Williams C, Charru A, Tichet J, Powers M et al. Haplotypes of angiotensinogen in essential hypertension. Am J Hum Genet 1997; 60: 1448–1460.

    Article  CAS  Google Scholar 

  6. Schunkert H, Hense HW, Gimenez-Roqueplo AP, Stieber J, Keil U, Riegger GA et al. The angiotensinogen T235 variant and the use of antihypertensive drugs in a population-based cohort. Hypertension 1997; 29: 628–633.

    Article  CAS  Google Scholar 

  7. Nakajima T, Inoue I, Cheng T, Lalouel JM . Molecular cloning and functional analysis of a factor that binds to the proximal promoter of human angiotensinogen. J Hum Genet 2002; 47: 7–13.

    Article  CAS  Google Scholar 

  8. Inoue I, Nakajima T, Williams CS, Quackenbush J, Puryear R, Powers M et al. A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest 1997; 99: 1786–1797.

    Article  CAS  Google Scholar 

  9. Schunkert H . Polymorphism of the angiotensin-converting enzyme gene and cardiovascular disease. J Mol Med 1997; 75: 867–875.

    Article  CAS  Google Scholar 

  10. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F . An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990; 86: 1343–1346.

    Article  CAS  Google Scholar 

  11. Faure-Delanef L, Baudin B, Beneteau-Burnat B, Beaudoin JC, Giboudeau J, Cohen D . Plasma concentration, kinetic constants, and gene polymorphism of angiotensin I-converting enzyme in centenarians. Clin Chem 1998; 44: 2083–2087.

    CAS  PubMed  Google Scholar 

  12. Turner ST, Boerwinkle E, Sing CF . Context-dependent associations of the ACE I/D polymorphism with blood pressure. Hypertension 1999; 34: 773–778.

    Article  CAS  Google Scholar 

  13. Mondorf UF, Russ A, Wiesemann A, Herrero M, Oremek G, Lenz T . Contribution of angiotensin I converting enzyme gene polymorphism and angiotensinogen gene polymorphism to blood pressure regulation in essential hypertension. Am J Hypertens 1998; 11: 174–183.

    Article  CAS  Google Scholar 

  14. Mondry A, Loh M, Liu P, Zhu AL, Nagel M . Polymorphisms of the insertion/deletion ACE and M235T AGT genes and hypertension: surprising new findings and meta-analysis of data. BMC Nephrol 2005; 6: 1–11.

    Article  Google Scholar 

  15. Renner W, Nauck M, Winkelmann BR, Hoffmann MM, Scharnagl H, Mayer V et al. Association of angiotensinogen haplotypes with angiotensinogen levels but not with blood pressure or coronary artery disease: the Ludwigshafen Risk and Cardiovascular Health Study. J Mol Med 2005; 83: 235–239.

    Article  CAS  Google Scholar 

  16. Keavney B, McKenzie C, Parish S, Palmer A, Clark S, Youngman L et al. Large-scale test of hypothesised associations between the angiotensin-converting-enzyme insertion/deletion polymorphism and myocardial infarction in about 5000 cases and 6000 controls. International Studies of Infarct Survival (ISIS) Collaborators. Lancet 2000; 355: 434–442.

    Article  CAS  Google Scholar 

  17. Taute BM, Seifert H, Taute R, Glaser C, Podhaisky H . Angiotensin-converting enzyme gene insertion/deletion polymorphism and carotid artery wall thickness in patients with peripheral arterial occlusive disease. Int Angiol 2000; 19: 337–344.

    CAS  PubMed  Google Scholar 

  18. Tseng CH, Tseng CP . Lack of association between angiotensin-converting enzyme gene polymorphism and peripheral vascular disease in type 2 diabetic patients in Taiwan. Circ J 2002; 66: 1014–1018.

    Article  CAS  Google Scholar 

  19. Renner W, Pabst E, Paulweber B, Malaimare L, Iglseder B, Wascher TC et al. The angiotensin-converting-enzyme insertion/deletion polymorphism is not a risk factor for peripheral arterial disease. Atherosclerosis 2002; 165: 175–178.

    Article  CAS  Google Scholar 

  20. Newman AB, Sutton-Tyrrell K, Kuller LH . Lower-extremity arterial disease in older hypertensive adults. Arterioscler Thromb 1993; 13: 555–562.

    Article  CAS  Google Scholar 

  21. Newman AB, Siscovick DS, Manolio TA, Polak J, Fried LP, Borhani NO et al. Ankle-arm index as a marker of atherosclerosis in the Cardiovascular Health Study. Cardiovascular Heart Study (CHS) Collaborative Research Group. Circulation 1993; 88: 837–845.

    Article  CAS  Google Scholar 

  22. Shanmugam V, Sell KW, Saha BK . Mistyping ACE heterozygotes. PCR Methods Appl 1993; 3: 120–121.

    Article  CAS  Google Scholar 

  23. Pahor M, Chrischilles EA, Guralnik JM, Brown SL, Wallace RB, Carbonin P . Drug data coding and analysis in epidemiologic studies. Eur J Epidemiol 1994; 10: 405–411.

    Article  CAS  Google Scholar 

  24. Czika W, Yu X, Wolfinger R . An introduction to genetic data analysis using SAS/Genetics. SAS 2002; 9.0: 1–10.

    Google Scholar 

  25. Holland BS, Copenhaver MD . An improved sequentially rejective bonferroni test procedure. Biometrics 1987; 43: 417–424.

    Article  Google Scholar 

  26. Holm S . A simple sequentially rejective bonferroni test procedure. Scand J Statist 1979; 6: 65–70.

    Google Scholar 

  27. Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG . Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered 2002; 53: 79–91.

    Article  Google Scholar 

  28. Staessen JA, Kuznetsova T, Wang JG, Emelianov D, Vlietinck R, Fagard R . M235T angiotensinogen gene polymorphism and cardiovascular renal risk. J Hypertens 1999; 17: 9–17.

    Article  CAS  Google Scholar 

  29. Paillard F, Chansel D, Brand E, Benetos A, Thomas F, Czekalski S et al. Genotype–phenotype relationships for the renin–angiotensin–aldosterone system in a normal population. Hypertension 1999; 34: 423–429.

    Article  CAS  Google Scholar 

  30. Tang W, Devereux RB, Rao DC, Oberman A, Hopkins PN, Kitzman DW et al. Associations between angiotensinogen gene variants and left ventricular mass and function in the HyperGEN study. Am Heart J 2002; 143: 854–860.

    Article  CAS  Google Scholar 

  31. Staessen JA, Wang JG, Ginocchio G, Petrov V, Saavedra AP, Soubrier F et al. The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular-renal risk. J Hypertens 1997; 15: 1579–1592.

    Article  CAS  Google Scholar 

  32. Collins TC, Petersen NJ, Suarez-Almazor M, Ashton CM . The prevalence of peripheral arterial disease in a racially diverse population. Arch Intern Med 2003; 163: 1469–1474.

    Article  Google Scholar 

  33. Ferreira AV, Viana MC, Mill JG, Asmar RG, Cunha RS . Racial differences in aortic stiffness in normotensive and hypertensive adults. J Hypertens 1999; 17: 631–637.

    Article  CAS  Google Scholar 

  34. Sagnella GA, Rothwell MJ, Onipinla AK, Wicks PD, Cook DG, Cappuccio FP . A population study of ethnic variations in the angiotensin-converting enzyme I/D polymorphism: relationships with gender, hypertension and impaired glucose metabolism. J Hypertens 1999; 17: 657–664.

    Article  CAS  Google Scholar 

  35. O’Donnell CJ, Lindpaintner K, Larson MG, Rao VS, Ordovas JM, Schaefer EJ et al. Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study. Circulation 1998; 97: 1766–1772.

    Article  Google Scholar 

  36. Bis JC, Psaty BM, Heckbert SR, Lemaitre RN, Smith NL . Angiotensin-converting enzyme insertion/deletion polymorphism, antihypertensive therapy, and risk of nonfatal stroke or myocardial infarction among hypertensive patients. Circulation 2004; 109: 27–28.

    Google Scholar 

  37. Wells PS, Rodger MA, Forgie MA, Langlois NJ, Armstrong L, Carson NL et al. The ACE D/D genotype is protective against the development of idiopathic deep vein thrombosis and pulmonary embolism. Thromb Haemost 2003; 90: 829–834.

    Article  CAS  Google Scholar 

  38. Winkelmann BR, Russ AP, Nauck M, Klein B, Bohm BO, Maier V et al. Angiotensinogen M235T polymorphism is associated with plasma angiotensinogen and cardiovascular disease. Am Heart J 1999; 137: 698–705.

    Article  CAS  Google Scholar 

  39. Sethi AA, Nordestgaard BG, Tybjaerg-Hansen A . Angiotensinogen gene polymorphism, plasma angiotensinogen, and risk of hypertension and ischemic heart disease: a meta-analysis. Arterioscler Thromb Vasc Biol 2003; 23: 1269–1275.

    Article  CAS  Google Scholar 

  40. Bloem LJ, Manatunga AK, Pratt JH . Racial difference in the relationship of an angiotensin I-converting enzyme gene polymorphism to serum angiotensin I-converting enzyme activity. Hypertension 1996; 27: 62–66.

    Article  CAS  Google Scholar 

  41. Wright Jr JT, Dunn JK, Cutler JA, Davis BR, Cushman WC, Ford CE et al. Outcomes in hypertensive black and nonblack patients treated with chlorthalidone, amlodipine, and lisinopril. JAMA 2005; 293: 1595–1608.

    Article  CAS  Google Scholar 

  42. Sayed-Tabatabaei FA, Oostra BA, Isaacs A, van Duijn CM, Witteman JC . ACE polymorphisms. Circ Res 2006; 98: 1123–1133.

    Article  CAS  Google Scholar 

  43. Forrester T, McFarlane-Anderson N, Bennett FI, Wilks R, Cooper R, Rotimi C et al. The angiotensin converting enzyme and blood pressure in Jamaicans. Am J Hypertens 1997; 10: 519–524.

    Article  CAS  Google Scholar 

  44. He J, Klag MJ, Appel LJ, Charleston J, Whelton PK . The renin–angiotensin system and blood pressure: differences between blacks and whites. Am J Hypertens 1999; 12: 555–562.

    Article  CAS  Google Scholar 

  45. Gardemann A, Fink M, Stricker J, Nguyen QD, Humme J, Katz N et al. ACE I/D gene polymorphism: presence of the ACE D allele increases the risk of coronary artery disease in younger individuals. Atherosclerosis 1998; 139: 153–159.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge all Health ABC participants. We appreciate Elizabeth Webb for her editing of this manuscript. This study was supported by grants NIH NIA NO1-AG-6-2101, NO1-AG-6-2103, and NO1-AG-6-2106; R01 AG18702-01A1 and P30 AG021332-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Nicklas, B., Pahor, M. et al. Polymorphisms of angiotensinogen and angiotensin-converting enzyme associated with lower extremity arterial disease in the Health, Aging and Body Composition study. J Hum Hypertens 21, 673–682 (2007). https://doi.org/10.1038/sj.jhh.1002198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1002198

Keywords

This article is cited by

Search

Quick links