Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Usefulness of the assessment of the appropriateness of left ventricular mass to detect left ventricular systolic and diastolic abnormalities in absence of echocardiographic left ventricular hypertrophy: the LIFE study

Abstract

Conventional definitions of left ventricular (LV) hypertrophy do not account for interindividual differences in loading conditions. We may define LV mass as inappropriately high when exceeding 128% of theoretical values predicted by gender, height2.7, and stroke work, which explain up to 82% of the variability of LV mass in normal reference subjects. In 652 participants in the Losartan Intervention For Endpoint reduction in hypertension study without clinically overt cardiovascular disease or diabetes, we investigated whether inappropriately high LV mass is associated with relevant LV abnormalities independent of traditional definition of LV hypertrophy (ie, LV mass index >116 g/m2 in men and >104 g/m2 in women). The study sample was divided into three groups: patients with inappropriately high LV mass but without LV hypertrophy were compared to patients with LV hypertrophy and to patients with appropriate LV mass and without LV hypertrophy. Patients with inappropriately high but nonhypertrophic LV mass had higher body mass index and relative wall thickness, and lower LV myocardial systolic function, than patients with appropriate LV mass or patients with LV hypertrophy. In multivariate analyses, inappropriately high LV mass was independently associated with lower myocardial systolic function independent of LV hypertrophy and other covariates. Inappropriately high LV mass was also associated with prolonged isovolumic relaxation time and lower mitral E/A ratio independent of covariates. In conclusion, inappropriately high LV mass was associated with relevant, often preclinical, manifestations of cardiac disease in the absence of traditionally defined echocardiographic LV hypertrophy and concentric geometry.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Devereux RB et al. Left ventricular systolic dysfunction in a biracial sample of hypertensive adults: The Hypertension Genetic Epidemiology Network (HyperGEN) Study. Hypertension 2001; 38: 417–423.

    Article  CAS  PubMed  Google Scholar 

  2. Bella JN et al. Relationship between left ventricular diastolic relaxation and systolic function in hypertension: The Hypertension Genetic Epidemiology Network (HyperGEN) Study. Hypertension 2001; 38: 424–428.

    Article  CAS  PubMed  Google Scholar 

  3. Levy D et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990; 322: 1561–1566.

    Article  CAS  PubMed  Google Scholar 

  4. Koren MJ et al. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 1991; 114: 345–352.

    Article  CAS  PubMed  Google Scholar 

  5. Liao Y et al. The relative effects of left ventricular hypertrophy, coronary artery disease, and ventricular dysfunction on survival among black adults. JAMA 1995; 273: 1592–1597.

    Article  CAS  PubMed  Google Scholar 

  6. de Simone G et al. Midwall left ventricular mechanics. An independent predictor of cardiovascular risk in arterial hypertension. Circulation 1996; 93: 259–265.

    Article  CAS  PubMed  Google Scholar 

  7. Aurigemma GP et al. Predictive value of systolic and diastolic function for incident congestive heart failure in the elderly: the cardiovascular health study. J Am Coll Cardiol 2001; 37: 1042–1048.

    Article  CAS  PubMed  Google Scholar 

  8. Bella JN et al. Mitral ratio of peak early to late diastolic filling velocity as a predictor of mortality in middle-aged and elderly adults: the Strong Heart Study. Circulation 2002; 105: 1928–1933.

    Article  PubMed  Google Scholar 

  9. de Simone G et al. Interaction between body size and cardiac workload: influence on left ventricular mass during body growth and adulthood. Hypertension 1998; 31: 1077–1082.

    Article  CAS  PubMed  Google Scholar 

  10. Palmieri V et al. Ambulatory blood pressure and metabolic abnormalities in hypertensive subjects with inappropriately high left ventricular mass. Hypertension 1999; 34: 1032–1040, [Erratum in Hypertension 2000; 36: 147].

    Article  CAS  PubMed  Google Scholar 

  11. Palmieri V et al. Left ventricular function and hemodynamic features of inappropriate left ventricular hypertrophy in patients with systemic hypertension: the LIFE study. Am Heart J 2001; 141: 784–791.

    Article  CAS  PubMed  Google Scholar 

  12. Mureddu GF et al. Appropriate or inappropriate left ventricular mass in the presence or absence of prognostically adverse left ventricular hypertrophy. J Hypertens 2001; 19: 1113–1119.

    Article  CAS  PubMed  Google Scholar 

  13. de Simone G et al. Prognosis of inappropriate left ventricular mass in hypertension: the MAVI Study. Hypertension 2002; 40: 470–476.

    Article  CAS  PubMed  Google Scholar 

  14. Dahlof B et al. Characteristics of 9194 patients with left ventricular hypertrophy: the LIFE study. Losartan Intervention For Endpoint reduction in hypertension. Hypertension 1998; 32: 989–997.

    Article  CAS  PubMed  Google Scholar 

  15. Wachtell K et al. Impact of different partition values on prevalences of left ventricular hypertrophy and concentric geometry in a large hypertensive population: the LIFE study. Hypertension 2000; 35: 6–12.

    Article  CAS  PubMed  Google Scholar 

  16. Devereux RB et al. Echocardiographic left ventricular geometry in hypertensive patients with electrocardiographic left ventricular hypertrophy: the LIFE Study. Blood Press 2001; 10: 74–82.

    Article  CAS  PubMed  Google Scholar 

  17. Devereux RB et al. Left ventricular wall stresses and wall stress–mass–heart rate products in hypertensive patients with electrocardiographic left ventricular hypertrophy: the LIFE study. Losartan Intervention For Endpoint reduction in hypertension. J Hypertens 2000; 18: 1129–1138.

    Article  CAS  PubMed  Google Scholar 

  18. Palmieri V et al. Reliability of echocardiographic assessment of left ventricular structure and function: the PRESERVE study. Prospective Randomized Study Evaluating Regression of Ventricular Enlargement. J Am Coll Cardiol 1999; 34: 1625–1632.

    Article  CAS  PubMed  Google Scholar 

  19. Sahn DJ, DeMaria A, Kisslo J, Weyman A . Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 1978; 58: 1072–1083.

    Article  CAS  PubMed  Google Scholar 

  20. Devereux RB, Roman JM . Evaluation of cardiac and vascular structure by echocardiography and other noninvasive techniques. In: Laragh JH, Brenner BM. (eds). Hypertension: Pathophysiology, Diagnosis, Treatment. Raven Press: New York, NY, 1995, pp 1969–1985.

    Google Scholar 

  21. Schiller NB et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 1989; 2: 358–367.

    Article  CAS  PubMed  Google Scholar 

  22. Devereux RB et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986; 57: 450–458.

    Article  CAS  PubMed  Google Scholar 

  23. Teichholz LE, Kreulen T, Herman MV, Gorlin R . Problems in echocardiographic volume determinations: echocardiographic–angiographic correlations in the presence or absence of asynergy. Am J Cardiol 1976; 37: 7–11.

    Article  CAS  PubMed  Google Scholar 

  24. Devereux RB et al. Relations of Doppler stroke volume and its components to left ventricular stroke volume in normotensive and hypertensive American Indians: the Strong Heart Study. Am J Hypertens 1997; 10: 619–628.

    Article  CAS  PubMed  Google Scholar 

  25. Kennedy JW et al. Quantitative angiocardiography. I. The normal left ventricle in man. Circulation 1966; 34: 272–278.

    Article  CAS  PubMed  Google Scholar 

  26. de Simone G et al. Assessment of left ventricular function by the midwall fractional shortening/end-systolic stress relation in human hypertension. J Am Coll Cardiol 1994; 23: 1444–1451, [erratum in J Am Coll Cardiol 1994; 24 : 844].

    Article  CAS  PubMed  Google Scholar 

  27. Palmieri V et al. Relations of diastolic left ventricular filling to systolic chamber and myocardial contractility in hypertensive patients with left ventricular hypertrophy (The PRESERVE Study). Am J Cardiol 1999; 84: 558–562.

    Article  CAS  PubMed  Google Scholar 

  28. Roman MJ, Devereux RB, Cody RJ . Ability of left ventricular stress-shortening relations, end-systolic stress/volume ratio and indirect indexes to detect severe contractile failure in ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1989; 64: 1338–1343.

    Article  CAS  PubMed  Google Scholar 

  29. de Simone G, Devereux RB, Celentano A, Roman MJ . Left ventricular chamber and wall mechanics in the presence of concentric geometry. J Hypertens 1999; 17: 1001–1006.

    Article  CAS  PubMed  Google Scholar 

  30. de Simone G et al. Relation of left ventricular diastolic properties to systolic function in arterial hypertension. Circulation 2000; 101: 152–157.

    Article  CAS  PubMed  Google Scholar 

  31. Devereux RB et al. Congestive heart failure despite normal left ventricular systolic function in a population-based sample: the Strong Heart Study. Am J Cardiol 2000; 86: 1090–1096.

    Article  CAS  PubMed  Google Scholar 

  32. Gandhi SK et al. The pathogenesis of acute pulmonary edema associated with hypertension. N Engl J Med 2001; 344: 17–22.

    Article  CAS  PubMed  Google Scholar 

  33. Schussheim AE et al. Usefulness of subnormal midwall fractional shortening in predicting left ventricular exercise dysfunction in asymptomatic patients with systemic hypertension. Am J Cardiol 1997; 79: 1070–1074.

    Article  CAS  PubMed  Google Scholar 

  34. Vasan RS, Benjamin EJ, Levy D . Congestive heart failure with normal left ventricular systolic function. Clinical approaches to the diagnosis and treatment of diastolic heart failure. Arch Intern Med 1996; 156: 146–157.

    Article  CAS  PubMed  Google Scholar 

  35. Hatle L . Doppler echocardiographic evaluation of diastolic function in hypertensive cardiomyopathies. Eur Heart J 1993; 14 (Suppl J): 88–94.

    PubMed  Google Scholar 

  36. de Simone G et al. Prognostic implications of the compensatory nature of left ventricular mass in arterial hypertension. J Hypertens 2001; 19: 119–125.

    Article  CAS  PubMed  Google Scholar 

  37. Celentano A et al. Inappropriate left ventricular mass in normotensive and hypertensive patients. Am J Cardiol 2001; 87: 361–363.

    Article  CAS  PubMed  Google Scholar 

  38. Palmieri V et al. Relation of various degrees of body mass index in patients with systemic hypertension to left ventricular mass, cardiac output, and peripheral resistance (The Hypertension Genetic Epidemiology Network Study). Am J Cardiol 2001; 88: 1163–1168.

    Article  CAS  PubMed  Google Scholar 

  39. Collis T et al. Relations of stroke volume and cardiac output to body composition: the strong heart study. Circulation 2001; 103: 820–825.

    Article  CAS  PubMed  Google Scholar 

  40. de Simone G et al. Relation of blood viscosity to demographic and physiologic variables and to cardiovascular risk factors in apparently normal adults. Circulation 1990; 81: 107–117.

    Article  CAS  PubMed  Google Scholar 

  41. Verdecchia P et al. Circulating insulin and insulin growth factor-1 are independent determinants of left ventricular mass and geometry in essential hypertension. Circulation 1999; 100: 1802–1807.

    Article  CAS  PubMed  Google Scholar 

  42. Celentano A et al. Inappropriate left ventricular mass and angiotensin converting enzyme gene polymorphism. J Hum Hypertens 2001; 15: 811–813.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Paulette A Lyle for assistance with preparation of the manuscript. This work was Grants from Merck & Co, Inc., West Point, PA, USA, and Editor, Mr and Mrs Anders Christian Kaarsen's Foundation, Copenhagen, Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Palmieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmieri, V., Wachtell, K., Bella, J. et al. Usefulness of the assessment of the appropriateness of left ventricular mass to detect left ventricular systolic and diastolic abnormalities in absence of echocardiographic left ventricular hypertrophy: the LIFE study. J Hum Hypertens 18, 423–430 (2004). https://doi.org/10.1038/sj.jhh.1001719

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001719

Keywords

This article is cited by

Search

Quick links