Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Blood pressure and left ventricular geometric pattern determine diastolic function in hypertensive myocardial hypertrophy

Abstract

Abnormal left ventricular (LV) diastolic relaxation is an early sign of hypertensive heart disease. Whether LV diastolic dysfunction is caused directly by raised blood pressure, or by structural changes related to LV hypertrophy remains controversial. We examined 115 hypertensive patients with LV hypertrophy, and two age- and gender-matched groups (38 hypertensive patients without LV hypertrophy and 38 normotensive subjects) by echocardiography to assess determinants of LV diastolic function, and the relation between diastolic function and LV geometric pattern. Diastolic function was evaluated by the E/A-ratio, E wave deceleration time (E-dec), isovolumic relaxation time (IVRT), and the atrioventricular plane displacement method (AV-LA/AV-mean). A multivariate analysis (including gender, age and body mass index) shows diastolic function to be inversely related to blood pressure, LV wall thickness and LV mass, but not to LV end diastolic diameter. The E/A-ratio generally showed the strongest relations. Only the E/A-ratio and AV-LA/AV-mean were related to heart rate. By stepwise regression analysis, age was the strongest determinant for the E/A-ratio, E-dec and AV-LA/AV-mean, followed by systolic blood pressure, heart rate and LV wall thickness. For IVRT, however, LV wall thickness appeared strongest, followed by systolic blood pressure and age. In conclusion, blood pressure and LV wall thickness both have independent influence on LV diastolic function. Age and blood pressure are the most important factors to determine the E/A-ratio and E-dec, whereas LV geometry and blood pressure are most important when IVRT is used. AV-LA/AV-mean may not be useful in hypertensive LV hypertrophy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Casale PN et al. Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Ann Intern Med 1986; 105: 173–178.

    Article  CAS  PubMed  Google Scholar 

  2. Levy D et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990; 322: 1561–1566.

    Article  CAS  PubMed  Google Scholar 

  3. Verdecchia P et al. Prognostic significance of serial changes in left ventricular mass in essential hypertension. Circulation 1998; 97: 48–54.

    Article  CAS  PubMed  Google Scholar 

  4. Koren MJ et al. Left ventricular mass change during treatment and outcome in patients with essential hypertension. Am J Hypertens 2002; 15: 1021–1028.

    Article  PubMed  Google Scholar 

  5. Koren MJ et al. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 1991; 114: 345–352.

    Article  CAS  PubMed  Google Scholar 

  6. Ren JF et al. Doppler echocardiographic evaluation of the spectrum of left ventricular diastolic dysfunction in essential hypertension. Am Heart J 1994; 127: 906–913.

    Article  CAS  PubMed  Google Scholar 

  7. Levy D et al. The progression from hypertension to congestive heart failure. JAMA 1996; 275: 1557–1562.

    Article  CAS  PubMed  Google Scholar 

  8. Ishida Y et al. Left ventricular filling dynamics: influence of left ventricular relaxation and left atrial pressure. Circulation 986; 74: 187–196.

    Article  Google Scholar 

  9. Nolan SP, Dixon Jr SH Fisher RD, Morrow AG . The influence of atrial contraction and mitral valve mechanics on ventricular filling. A study of instantaneous mitral valve flow in vivo. Am Heart J 1969; 77: 784–791.

    Article  CAS  PubMed  Google Scholar 

  10. Voutilainen S et al. Factors influencing Doppler indexes of left ventricular filling in healthy persons. Am J Cardiol 1991; 68: 653–659.

    Article  CAS  PubMed  Google Scholar 

  11. Malmqvist K et al. Regression of left ventricular hypertrophy in human hypertension with irbesartan. J Hypertens 2001; 19: 1167–1176.

    Article  CAS  PubMed  Google Scholar 

  12. Remme WJ, Swedberg K . Guidelines for the diagnosis and treatment of chronic heart failure. Eur Heart J 2001; 22: 1527–1560.

    Article  CAS  PubMed  Google Scholar 

  13. Devereux RB, Reichek N . Echocardiographic determination of left ventricular man in man. Anatomical validation of the method. Circulation 1977; 55: 613–618.

    Article  CAS  PubMed  Google Scholar 

  14. Levy D et al. Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors. The Framingham Heart Study. Ann Intern Med 1988; 108: 7–13.

    Article  CAS  PubMed  Google Scholar 

  15. Krumholz HM, Larson M, Levy D . Prognosis of left ventricular geometric patterns in the Framingham Heart Study. J Am Coll Cardiol 1995; 25: 879–884.

    Article  CAS  PubMed  Google Scholar 

  16. Schiller NB et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 1989; 2: 358–367.

    Article  CAS  PubMed  Google Scholar 

  17. Höglund C, Alam M, Thorstrand C . Atrioventricular valve plane displacement in healthy persons. An echocardiographic study. Acta Med Scand 1988; 224: 557–562.

    Article  PubMed  Google Scholar 

  18. Zaky A, Grabhorn L, Feigenbaum H . Movement of the mitral ring: a study in ultrasoundcardiography. Cardiovasc Res 1967; 1: 121–131.

    Article  CAS  PubMed  Google Scholar 

  19. Alam M, Höglund C . Assessment by echocardiogram of left ventricular diastolic function in healthy subjects using the atrioventricular plane displacement. Am J Cardiol 1992; 69: 565–568.

    Article  CAS  PubMed  Google Scholar 

  20. Agabiti-Rosei E, Muiesan ML . Left ventricular diastolic function in essential hypertension. Contrib Nephrol 1994; 106: 174–178.

    Article  CAS  PubMed  Google Scholar 

  21. de Simone G et al. Relation of left ventricular diastolic properties to systolic function in arterial hypertension. Circulation 2000; 101: 152–157.

    Article  CAS  PubMed  Google Scholar 

  22. Aeschbacher BC et al. Diastolic dysfunction precedes myocardial hypertrophy in the development of hypertension. Am J Hypertens 2001; 14: 106–113.

    Article  CAS  PubMed  Google Scholar 

  23. Galderisi M et al. Impact of ambulatory blood pressure on left ventricular diastolic dysfunction in uncomplicated arterial systemic hypertension. Am J Cardiol 1996; 77: 597–601.

    Article  CAS  PubMed  Google Scholar 

  24. Genovesi-Ebert A et al. Left ventricular filling: relationship with arterial blood pressure, left ventricular mass, age, heart rate and body build. J Hypertens 1991; 9: 345–353.

    Article  CAS  PubMed  Google Scholar 

  25. Mureddu GF et al. Left ventricular filling in arterial hypertension. Influence of obesity and haemodynamic and structural confounders. Hypertension 1997; 29: 544–550.

    Article  CAS  PubMed  Google Scholar 

  26. Galderisi M et al. Impact of heart rate and PR interval on Doppler indexes of left ventricular diastolic filling in an elderly cohort (the Framingham Heart Study). Am J Cardiol 1993; 72: 1183–1187.

    Article  CAS  PubMed  Google Scholar 

  27. Bonaduce D et al. Myocardial hypertrophy and left ventricular diastolic function in hypertensive patients: an echo Doppler evaluation. Eur Heart J 1989; 10: 611–621.

    Article  CAS  PubMed  Google Scholar 

  28. Weber KT, Brilla CG . Pathological hypertrophy and cardiac interstitium. Fibrosis and renin–angiotensin–aldosterone system. Circulation 1991; 83: 1849–1865.

    Article  CAS  PubMed  Google Scholar 

  29. Schmieder RE et al. Does the renin–angiotensin–aldosterone system modify cardiac structure and function in essential hypertension? Am J Med 1988; 84: 136–139.

    Article  CAS  PubMed  Google Scholar 

  30. Harrap SB et al. Plasma angiotensin II, predisposition to hypertension, and left ventricular size in healthy young adults. Circulation 1996; 93: 1148–1154.

    Article  CAS  PubMed  Google Scholar 

  31. Malmqvist K et al. The renin–angiotensin system, sympathetic nervous system, insulin and leptin in relation to left ventricular mass. J Internal Med 2002; 252: 430–439.

    Article  CAS  PubMed  Google Scholar 

  32. Mureddu GF et al. Relation of insulin resistance to left ventricular hypertrophy and diastolic dysfunction in obesity. Int J Obes Relat Metab Disord. 1998; 22: 363–368.

    Article  CAS  PubMed  Google Scholar 

  33. Wachtell K et al. Change in diastolic left ventricular filling after one year of antihypertensive treatment: The Losartan Intervention For Endpoint Reduction in Hypertension (LIFE) Study. Circulation 2002; 105: 1071–1076.

    Article  PubMed  Google Scholar 

  34. Reichek N, Devereux RB . Reliable estimation of peak left ventricular systolic pressure by M-mode echocardiographic-determined end-diastolic relative wall thickness: identification of severe valvular aortic stenosis in adult patients. Am Heart J 1982; 103: 202–209.

    Article  CAS  PubMed  Google Scholar 

  35. Wachtell K et al. Impact of different partition values on prevalences of left ventricular hypertrophy and concentric geometry in a large hypertensive population: the LIFE study. Hypertension 2000; 35: 6–12.

    Article  CAS  PubMed  Google Scholar 

  36. Verdecchia P et al. Asymmetric left ventricular remodeling due to isolated septal thickening in patients with systemic hypertension and normal left ventricular mass. Am J Cardiol 1994; 73: 247–252.

    Article  CAS  PubMed  Google Scholar 

  37. Wandt B, Bojo L, Tolagen K, Wranne B . Echocardiographic assessment of ejection fraction in left ventricular hypertrophy. Heart 1999; 82: 192–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jones CJ, Raposo L, Gibson DG . Functional importance of the long axis dynamics of the human left ventricle. Br Heart J 1990; 63: 215–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aurigemma GP, Silver KH, Priest MA, Gaasch WH . Geometric changes allow normal ejection fraction despite depressed myocardial shortening in hypertensive left ventricular hypertrophy. J Am Coll Cardiol 1995; 26: 195–202.

    Article  CAS  PubMed  Google Scholar 

  40. Licata G, Scaglione R, Parrinello G, Corrao S . Rapid left ventricular filling in untreated hypertensive subjects with or without left ventricular hypertrophy. Chest 1992; 102: 1507–1511.

    Article  CAS  PubMed  Google Scholar 

  41. Lutas EM et al. Increased cardiac performance in mild essential hypertension. Left ventricular mechanics. Hypertension 1985; 7: 979–988.

    Article  CAS  PubMed  Google Scholar 

  42. Hartford M et al. Left ventricular wall stress and systolic function in untreated primary hypertension. Hypertension 1985; 7: 97–104.

    Article  CAS  PubMed  Google Scholar 

  43. Gandhi SK et al. The pathogenesis of acute pulmonary edema associated with hypertension. N Engl J Med 2001; 344: 17–22.

    Article  CAS  PubMed  Google Scholar 

  44. Vasan RS, Benjamin EJ, Levy D . Prevalence, clinical features and prognosis of diastolic heart failure: an epidemiologic perspective. J Am Coll Cardiol 1995; 26: 1565–1574.

    Article  CAS  PubMed  Google Scholar 

  45. Schillaci G et al. Prognostic significance of left ventricular diastolic dysfunction in essential hypertension. J Am Coll Cardiol 2002; 39: 2005–2011.

    Article  PubMed  Google Scholar 

  46. Bella JN et al. Mitral ratio of peak early to late diastolic filling velocity as a predictor of mortality in middle-aged and elderly adults: the Strong Heart Study. Circulation 2002; 105: 1928–1933.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms A-M Ekman, A-C Kjerr, M Lundström and M Ring for expert technical assistance. This study was supported by Karolinska Institutet, Stockholm, Sweden, the Swedish Heart-Lung Foundation, the Swedish Society of Hypertension, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ, USA and Sanofi-Synthélabo, Paris, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Kahan.

Additional information

Results from the Swedish irbesartan left ventricular hypertrophy investigation vs atenolol (SILVHIA)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller-Brunotte, R., Kahan, T., Malmqvist, K. et al. Blood pressure and left ventricular geometric pattern determine diastolic function in hypertensive myocardial hypertrophy. J Hum Hypertens 17, 841–849 (2003). https://doi.org/10.1038/sj.jhh.1001622

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001622

Keywords

This article is cited by

Search

Quick links