Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Review Article

Microalbuminuria, an integrated marker of cardiovascular risk in essential hypertension

Abstract

This paper reviews the existing epidemiological and clinical evidence about the relationships of non-diabetic microalbuminuria with cardiovascular risk factors such as elevated blood pressure (BP), systolic particularly, cardiac hypertrophy, adverse metabolic status, smoking habits, elevated angiotensin II levels, endothelial dysfunction, acute and perhaps subclinical inflammation. Because of that unique property of reflecting the influence of so many clinically relevant parameters, microalbuminuria may legitimately be defined as an integrated marker of cardiovascular risk, an unique profile among the several prognostic predictors available to stratify risk in hypertensive patients. Recent cohort studies also showed associations with cardiovascular morbidity and mortality independently from conventional atherogenic factors. This behaviour, whose understanding still needs further elucidation, suggests to measure albuminuria and to screen patients at a higher absolute risk in whom preventive treatment is expected to be more beneficial than in those with a lower absolute risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Parving HH, Jensen HA, Mogensen HA, Evrin PE . Increased urinary albumin excretion rate in benign essential hypertension Lancet 1974 i: 1190–1193

    Google Scholar 

  2. Yudkin JS, Forrest RD, Jackson C . Microalbuminuria as predictor of vascular disease in non diabetic subjects Lancet 1988 2: 530–533

    CAS  PubMed  Google Scholar 

  3. Pedrinelli R . Microalbuminuria in hypertension Nephron 1996 73: 499–505

    CAS  PubMed  Google Scholar 

  4. Pedrinelli R, Dell'Omo G, Penno G, Mariani M . Non diabetic microalbuminuria, endothelial dysfunction and cardiovascular disease Vasc Med 2001 in press

  5. Gerstein HC et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals JAMA 2001 25: 421–426

    Google Scholar 

  6. Roest M et al. Excessive urinary albumin levels are associated with future cardiovascular mortality in postmenopausal women Circulation 2001 103: 3057–3061

    CAS  PubMed  Google Scholar 

  7. Gerber LM, Johnston K, Alderman MH . Assessment of a new dipstick test in screening for microalbuminuria inpatients with hypertension Am J Hypertens 1998 11: 1321–1327

    CAS  PubMed  Google Scholar 

  8. Mogensen CE et al. Multicenter evaluation of the Micral-Test II test strip, an immunologic rapid test for the detection of microalbuminuria Diabetes Care 1997 20: 1642–1646

    CAS  PubMed  Google Scholar 

  9. Bog-Hansen E et al. Impaired glucose metabolism and obesity in Swedishpatients with borderline isolated systolic hypertension: Skaraborg Hypertension and Diabetes Project Diabetes Obes Metab 2001 3: 25–31

    CAS  PubMed  Google Scholar 

  10. Haffner SM et al. Is microalbuminuria part of theprediabetic state? The Mexico City Diabetes Study Diabetologia 1993 36: 1002–1006

    CAS  PubMed  Google Scholar 

  11. Agrawal B, Berger A, Wolf K, Luft FC . Microalbuminuria screening by reagent strip predicts cardiovascular risk in hypertension J Hypertens 1996 14: 223–228

    CAS  PubMed  Google Scholar 

  12. Gatzka CD et al. Left ventricular mass and microalbuminuria: relation to ambulatory blood pressure. Hypertension Diagnostic Service Investigators Clin Exp Pharmacol Physiol 1999 26: 514–516

    CAS  PubMed  Google Scholar 

  13. Jiang X et al. Microalbuminuria in young adults related to blood pressure in a biracial (black-white) population. The Bogalusa Heart Study Am J Hypertens 1994 7: 794–800

    CAS  PubMed  Google Scholar 

  14. Gerstein HC et al. Prevalence and determinants of microalbuminuria in high-risk diabetic and nondiabeticpatients in the Heart Outcomes Prevention Evaluation Study Diabetes Care 2000 23 (Suppl 2): B35–B39

    Google Scholar 

  15. Mangili R et al the Italian Microalbuminuria Study Group. Prevalence of hypertension and microalbuminuria in adult type 1 (insulin dependent)diabeticpatients without renal failure in Italy: Validation of screening techniques to detect albuminuria Acta Diabetol 1992 29: 156–166

    Google Scholar 

  16. Jensen JS et al. Detecting microalbuminuria by urinary albumin/creatinine concentration ratio Nephrol Dial Transplant 1997 12 (Suppl 2): 6–9

    Google Scholar 

  17. Gosling P, Beevers DG . Urinary albumin excretion and blood pressure in the general population Clin Sci 1989 76: 39–42

    CAS  PubMed  Google Scholar 

  18. Cirillo M et al. Microalbuminuria in non diabetic adults. Relation of blood pressure, body mass index, plasma cholesterol levels and smoking: the Gubbio population study Arch Int Med 1998 158: 1933–1939

    CAS  Google Scholar 

  19. Gould MM et al. Microalbuminuria: associations with height and sex in non diabetic subjects BMJ 1993 306: 240–242

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuusisto J, Mykkanen L, Pyorala K, Laakso M . Hyperinsulinemic microalbuminuria. A new risk indicator for coronary heart disease Circulation 1995 91: 831–837

    CAS  Google Scholar 

  21. Mikkänen L et al. Microalbuminuria precedes the development of NIDDM Diabetes 1994 43: 552–557

    Google Scholar 

  22. Jager A et al. Microalbuminuria and peripheral arterial disease are independent predictors of cardiovascular and allcause mortality, especially among hypertensive subjects: five-year follow-up of the Hoorn Study Arterioscler Thromb Vasc Biol 1999 19: 617–624

    CAS  PubMed  Google Scholar 

  23. Jensen JS et al. Microalbuminuria and its relation to cardiovascular disease and risk factors. A population-based study of 1254 hypertensive individuals J Hum Hypertens 1997 11: 727–732

    CAS  PubMed  Google Scholar 

  24. Palatini P et al. Target-organ damage in stage I hypertensive subjects with white coat and sustained hypertension: results from the HARVEST study Hypertension 1998 31: 57–63

    CAS  PubMed  Google Scholar 

  25. Pontremoli R et al. Prevalence and clinical correlates of microalbuminuria in essential hypertension: the MAGIC Study. Microalbuminuria: A Genoa Investigation on Complications Hypertension 1997 30: 1135–1143

    CAS  PubMed  Google Scholar 

  26. Hörner D, Fliser DD, Klimm HP, Ritz E . Albuminuria in normotensive and hypertensive individuals attending offices of general practitioners J Hypertens 1996 14: 655–660

    PubMed  Google Scholar 

  27. Pierdomenico SD et al. Target organ status and serum lipids inpatients with white coat hypertension Hypertension 1995 26: 801–807

    CAS  PubMed  Google Scholar 

  28. Hoegholm A, Kristensen KS, Bang LE, Nielsen JW . White coat hypertension and target organ involvement: the impact of different cut-off levels on albuminuria and left ventricular mass and geometry J Hum Hypertens 1998 12: 433–439

    CAS  PubMed  Google Scholar 

  29. Williams SA et al. Capillary hypertension and abnormal pressure dynamics inpatients with essential hypertension Clin Sci 1990 79: 5–8

    CAS  PubMed  Google Scholar 

  30. Hoegholm A et al. Microalbuminuria in 411 untreated individuals with established hypertension, white coat hypertension, and normotension Hypertension 1994 24: 101–105

    CAS  PubMed  Google Scholar 

  31. Gilbert RE, Phillips P, Jerums G . Relationship between ambulatory blood pressure and albuminuria in normal subjects Am J Hypertens 1991 4: 959–962

    CAS  PubMed  Google Scholar 

  32. Clausen P et al. Ambulatory blood pressure and urinary albumin excretion in clinically healthy subjects Hypertension 1998 32: 71–77

    CAS  PubMed  Google Scholar 

  33. Nielsen S, Dollerup J, Nielsen B, Mogensen CE . Combination of enalapril and low-dose thiazide reduces normoalbuminuria in essential hypertension J Hypertens 1998 16: 1539–1544

    CAS  PubMed  Google Scholar 

  34. Christensen CK . Rapidly reversible albumin and beta2-microglobulin hyperexcretion in recent severe essential hypertension J Hypertens 1983 1: 45–51

    CAS  PubMed  Google Scholar 

  35. Biesenbach G, Zazgornik J . High prevalence of hypertensive retinopathy and coronary artery disease in hypertensivepatients with persistent microalbuminuria under short intensive antihyperetensive therapy Clin Nephrol 1994 41: 211–218

    CAS  PubMed  Google Scholar 

  36. Pedersen EB, Mogensen CE . Effect of antihypertensive treatment on urinary albumin excretion, glomerular filtration rate, and renal plasma flow inpatients with essential hypertension Scand J Clin Lab Invest 1976 36: 231–237

    CAS  PubMed  Google Scholar 

  37. Yamada T, Ishihara M, Ichikawa K, Hiramatsu K . Proteinuria and renal function during antihypertensive treatment for essential hypertension J Am Ger Ass 1980 28: 114–117

    CAS  Google Scholar 

  38. Persson B et al. Calcium antagonism in essential hypertension: effect on renal haemodynamics and microalbuminuria J Int Med 1992 251: 48–52

    Google Scholar 

  39. Erley CM et al. Microalbuminuria in essential hypertension. Reduction by antihypertensive drugs Hypertension 1993 21: 810–815

    CAS  PubMed  Google Scholar 

  40. Abraham PA et al. Urinary albumin and N-Acetyl-β-D-Glucosaminidase excretions in mild hypertension Am J Hypertens 1994 7: 965–974

    CAS  PubMed  Google Scholar 

  41. Laviades C, Varo N, Diez J . Transforming growth factor β in hypertensives with cardiorenal damage Hypertension 2000 36: 517–522

    CAS  PubMed  Google Scholar 

  42. Bigazzi R et al. Long-term effects of a converting enzyme inhibitor and a calcium channel blocker on urinary albumin excretion inpatients with essential hypertension Am J Hypertens 1993 6: 108–113

    CAS  PubMed  Google Scholar 

  43. Ogawa Y et al. Effects of lisinopril and nitrendipine on urinary albumin excretion and renal function inpatients with mild to moderate essential hypertension Hypertens Res 2000 23: 607–612

    CAS  PubMed  Google Scholar 

  44. Pontremoli R et al. Long term effect of Nifedipine GITS and Lisinopril on subclinical organ damage inpatients with essential hypertension J Nephrol 2001 14: 19–26

    CAS  PubMed  Google Scholar 

  45. Pedrinelli R et al. Forearm reserve and the cardiac and renal indices of pressure load in normo- and hypertensives Hypertension 1994 24: 24–29

    CAS  PubMed  Google Scholar 

  46. Folkow B . The ‘structural factor’ in hypertension: with special emphasis on the hypertrophic adaption of the systemic resistance vessels. In: Laragh JH, Brenner BM (eds) Hypertension: Pathophysiology, Diagnosis and Management Raven Press: New York 1990 chap 37 pp 547–564

    Google Scholar 

  47. Clausen P et al. Elevated urinary albumin excretion is associated with impaired arterial dilatory capacity in clinically healthy subjects Circulation 2001 103: 1869–1874

    CAS  PubMed  Google Scholar 

  48. Cirillo M et al. Pulse pressure and isolated systolic hypertension: association with microalbuminuria. The GUBBIO Study Collaborative Research Group Kidney Int 2000 58: 1211–1218

    CAS  PubMed  Google Scholar 

  49. Pedrinelli R et al. Microalbuminuria and pulse pressure in hypertensive and atherosclerotic men Hypertension 2000 35: 48–54

    CAS  PubMed  Google Scholar 

  50. Tsioufis CP et al. Microalbuminuria is associated with abnormal thoracic aortic mechanics in essential hypertension Am J Cardiol 2000 86: 797–801

    CAS  PubMed  Google Scholar 

  51. Pinto-Sietsma S-J et al. Urinary albumin excretion is associated with renal functional abnormalities in a nondiabetic population J Am Soc Nephrol 2000 11: 1882–1888

    CAS  PubMed  Google Scholar 

  52. Agewall S, Fagerberg B . Risk factors that predict development of microalbuminuria in treated hypertensive men. The Risk Intervention Study Group Angiology 1996 47: 963–972

    CAS  PubMed  Google Scholar 

  53. Goetz FC et al. Risk factors for kidney damage in the adult population of Wadena, Minnesota. A prospective study Am J Epidemiol 1997 145: 91–102

    CAS  PubMed  Google Scholar 

  54. Verdecchia P . Prognostic value of ambulatory blood pressure: current evidence and clinical implications Hypertension 2000 35: 844–851

    CAS  PubMed  Google Scholar 

  55. Smulyan H, Safar ME . Systolic blood pressure revisited J Am Coll Cardiol 1997 29: 1407–1413

    CAS  PubMed  Google Scholar 

  56. Jensen JS . Microalbuminuria and the risk of atherosclerosis. Clinical epidemiological and physiological investigations Med Bull 2000 47: 63–78

    CAS  Google Scholar 

  57. Pedrinelli R et al. Transvascular and urinary leakage of albumin in atherosclerotic and hypertensive men Hypertension 1998 32: 312–318

    Google Scholar 

  58. Pedrinelli R et al. Microalbuminuria and transvascular albumin leakage in essential hypertension Hypertension 1999 34: 491–495

    CAS  PubMed  Google Scholar 

  59. Pedrinelli R et al. Dissociation between microalbuminuria and common carotid thickness in essential hypertensive men J Hum Hypertens 2000 14: 831–835

    CAS  PubMed  Google Scholar 

  60. Borch-Johnsen K et al. Urinary albumin excretion. An independent predictor of ischemic heart disease Arterioscler Thromb Vasc Biol 1999 19: 1992–1997

    CAS  PubMed  Google Scholar 

  61. Jensen JS et al. Arterial hypertension, microalbuminuria, and risk of ischemic heart disease Hypertension 2000 35: 898–903

    CAS  PubMed  Google Scholar 

  62. Poulsen PL, Ebbehoj E, Hansen KW, Mogensen CE . High normo- or low microalbuminuria: basis for intervention in insulin-dependent diabetes mellitus Kidney Int 1997 63: S15–S18

    CAS  Google Scholar 

  63. Nishijo M et al. Microalbuminuria and hypertension in nondiabetic Japanese men Am J Hypertens 1999 12: 16–20

    CAS  PubMed  Google Scholar 

  64. Tomura S et al. Prevalence of microalbuminuria and relationship to the risk of cardiovascular disease in the Japanese population Am J Nephrol 1999 19: 13–20

    CAS  PubMed  Google Scholar 

  65. Kim CH et al. Association of microalbuminuria and atherosclerotic risk factors in non-diabetic subjects in Korea Diabetes Res Clin Pract 1998 40: 191–199

    CAS  PubMed  Google Scholar 

  66. Bianchi S et al. Elevated serum insulin levels inpatients with essential hypertension and microalbuminuria Hypertension 1994 23: 681–687

    CAS  PubMed  Google Scholar 

  67. Bianchi S et al. Insulin resistance in microalbuminuric hypertension. Sites and mechanisms Hypertension 1995 26: 789–795

    CAS  PubMed  Google Scholar 

  68. Agewall S et al. Microalbuminuria, insulin sensitivity and hemostatic factors in non diabetic treated hypertensive men J Int Med 1995 237: 195–203

    CAS  Google Scholar 

  69. Redon J et al. Hyperinsulinemia as a determinant of microalbuminuria in essential hypertension J Hypertens 1997 15: 79–86

    CAS  PubMed  Google Scholar 

  70. Andronico G et al. Insulin, sodium-lithium countertransport, and microalbuminuria in hypertensivepatients Hypertension 1998 31: 110–113

    CAS  PubMed  Google Scholar 

  71. Collins VR et al. Prevalence and risk factors for micro- and macroalbuminuria in diabetic subjects and entire population of Nauru Diabetes 1989 38: 1602–1610

    CAS  PubMed  Google Scholar 

  72. Haffner SM et al. Microalbuminuria Potential marker for increased cardiovascular risk factors in non diabetic subjects, Arteriosclerosis 1990 10: 727–731

    CAS  Google Scholar 

  73. Reaven GM . Insulin resistance and human disease: a short history J Basic Clin Physiol Pharmacol 1998 9: 387–406

    CAS  PubMed  Google Scholar 

  74. Tomiyama H et al. The relationship of hyperinsulinemic state to left ventricular hypertrophy, microalbuminuria, and physical fitness in borderline and mild hypertension Am J Hypertens 1997 10: 587–591

    CAS  PubMed  Google Scholar 

  75. Mykkanen L et al. Microalbuminuria is associated with insulin resistance in nondiabetic subjects: the insulin resistance atherosclerosis study Diabetes 1998 47: 793–800

    CAS  PubMed  Google Scholar 

  76. Calviño J et al. Atherosclerosis profile and microalbuminuria in essential hypertension Am J Kidney Dis 1999 34: 996–1001

    PubMed  Google Scholar 

  77. Metcalf P et al. Albuminuria in people at least 40 year old: effect of obesity, hypertension and hyperlipidemia Clin Chem 1992 38: 1802–1808

    CAS  PubMed  Google Scholar 

  78. Løkkegaard N, Haupter I, Kristensen TB . Microalbuminuria in obesity Scand J Urol Nephrol 1992 26: 275–278

    PubMed  Google Scholar 

  79. Bigazzi R, Bianchi S, Baldari G, Campese VM . Clustering of cardiovascular risk factors in salt-sensitivepatients with essential hypertension: role of insulin Am J Hypertens 1996 9: 24–32

    CAS  PubMed  Google Scholar 

  80. Hilsted J, Christensen NJ . Dual effect of insulin on plasma volume and transcapillary albumin transport Diabetologia 1992 35: 99–103

    CAS  PubMed  Google Scholar 

  81. Catalano C et al. Effect of insulin on systemic and renal handling of albumin in nondiabetic and NIDDM subjects Diabetes 1997 46: 868–875

    CAS  PubMed  Google Scholar 

  82. Yudkin JS . Microalbuminuria: a genetic link between diabetes and cardiovascular disease? Ann Med 1992 24: 517–522

    CAS  PubMed  Google Scholar 

  83. Forsblom CM et al. Insulin resistance and abnormal albumin excretion in non-diabetic first-degree relatives ofpatients with NIDDM Diabetologia 1995 38: 363–369

    CAS  PubMed  Google Scholar 

  84. Nosadini R et al. Sodium-lithium countertransport and cardiorenal abnormalities in essential hypertension Hypertension 1991 18: 191–198

    CAS  PubMed  Google Scholar 

  85. Falkner B, Kushner H, Levison S, Canessa M . Albuminuria in association with insulin and sodium-lithium countertransport in young African Americans with borderline hypertension Hypertension 1995 25: 1315–1321

    CAS  PubMed  Google Scholar 

  86. Mahnensmith RL, Aronson PS . The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathophysiological processes Circ Res 1985 56: 773–778

    CAS  PubMed  Google Scholar 

  87. Giampietro O et al. Microalbuminuria and erythrocyte sodium-hydrogen exchange in essential hypertension Hypertension 1995 25: 981–985

    CAS  PubMed  Google Scholar 

  88. Winocour PH et al. Microalbuminuria and associated cardiovascular risk factors in the community Atherosclerosis 1992 93: 71–81

    CAS  PubMed  Google Scholar 

  89. Zavaroni I et al. Dissociation between urinary albumin excretion and variables associated with insulin resistance in a healthy population J Int Med 1996 240: 151–156

    CAS  Google Scholar 

  90. Jager A et al. Microalbuminuria is strongly associated with NIDDM and hypertension, but not with the insulin resistance syndrome: the Hoorn Study Diabetologia 1998 41: 694–700

    CAS  PubMed  Google Scholar 

  91. Jensen JS, Borch-Johnsen K, Jensen G, Feldt-Rasmussen B . Insulin sensitivity in clinically healthy individuals with microalbuminuria Atherosclerosis 1996 119: 69–76

    CAS  PubMed  Google Scholar 

  92. Hodge AM, Dowse GK, Zimmet PZ . Microalbuminuria, cardiovascular risk factors, and insulin resistance in two populations with a high risk of type 2 diabetes mellitus Diabet Med 1996 13: 441–449

    CAS  PubMed  Google Scholar 

  93. Woo J et al. Microalbuminuria and other cardiovascular risk factors in non diabetic subjects Int J Cardiol 1992 37: 345–350

    CAS  PubMed  Google Scholar 

  94. Foyle WJ, Carstensen E, Fernandez MC, Yudkin JS . Longitudinal study of associations of microalbuminuria with the insulin resistance syndrome and sodium lithium countertransport in non diabetic subjects Arterioscler Thromb Vasc Biol 1995 15: 1330–1337

    CAS  Google Scholar 

  95. Robbins DC et al. Regional differences in albuminuria among American Indians: an epidemic of renal disease Kidney Int 1996 49: 557–563

    CAS  PubMed  Google Scholar 

  96. Ribstein J, du Cailar G, Mimran A . Combined renal effects of overweight and hypertension Hypertension 1995 26: 610–615

    CAS  PubMed  Google Scholar 

  97. Yip JW et al. Insulin resistance inpatients with essential hypertension can occur in absence of microalbuminuria Am J Hypertens 1996 9: 959–963

    CAS  PubMed  Google Scholar 

  98. Pedrinelli R et al. Dissociation between albuminuria and insulinemia in hypertensive and atherosclerotic men J Hum Hypertens 1999 13: 129–134

    CAS  PubMed  Google Scholar 

  99. Grandi AM et al. Microalbuminuria in never-treated hypertensives: lack of relationship to hyperinsulinemia and genetic predisposition to hypertension Am J Hypertens 2000 13: 353–358

    CAS  PubMed  Google Scholar 

  100. Alderman MH et al. Plasma renin activity: a risk factor for myocardial infarction in hypertensivepatients Am J Hypertens 1997 10: 1–8

    CAS  PubMed  Google Scholar 

  101. Baldoncini R et al. High plasma renin activity is combined with elevated urinary albumin excretion in essential hypertension Kidney Int 1999 56: 1499–1504

    CAS  PubMed  Google Scholar 

  102. Pontremoli R et al. The deletion polymorphism of the angiotensin I-converting enzyme gene is associated with target organ damage in essential hypertension J Am Soc Nephrol 1996 7: 2550–2558

    CAS  PubMed  Google Scholar 

  103. Kario K et al. Hypertensive nephropathy and the gene for angiotensin-converting enzyme Arterio-scler Thromb Vasc Biol 1997 17: 252–256

    CAS  Google Scholar 

  104. Agerholm-Larsen B, Tybjserg-Hansen A, Schnohr P, Nordestgaard BG . ACE gene polymorphism explains 30–40% of variability in serum ACE activity in both women and men in the population at large: the Copenhagen City Heart Study Atherosclerosis 1999 147: 425–427

    CAS  PubMed  Google Scholar 

  105. Pontremoli R et al. Genetic polymorphism of the renin-angiotensin system and organ damage in essential hypertension Kidney Int 2000 57: 561–569

    CAS  PubMed  Google Scholar 

  106. Chase PH et al. Cigarette smoking increases the risk of albuminuria among subjects with type I diabetes JAMA 1991 265: 614–617

    CAS  PubMed  Google Scholar 

  107. Corradi L et al. Association between smoking and microalbuminuria in hypertensivepatients with type 2 diabetes mellitus J Hypertens 1993 11 (Suppl 5): s190–s191

    Google Scholar 

  108. Gosling P, Shearman CP, Beevers DG . Urinary albumin excretion in smokers and non smokers Contrib Nephrol 1990 83: 151–155

    CAS  PubMed  Google Scholar 

  109. Metcalf PA et al. Albuminuria in people at least 40 years old: effect of alcohol consumption, regular exercise, and cigarette smoking Clin Chem 1993 39: 1793–1797

    CAS  PubMed  Google Scholar 

  110. Mimran A, Ribstein J, Du Cailar G, Halimi JM . Albuminuria in normals and essential hypertension J Diab Comp 1994 8: 150–156

    CAS  Google Scholar 

  111. Pedrinelli R et al. Microalbuminuria and endothelial dysfunction in essential hypertension Lancet 1994 344: 14–18

    CAS  PubMed  Google Scholar 

  112. Spangler JG, Bell RA, Summerson JH, Konen JC . Correlates of abnormal urinary albumin excretion rates among primary carepatients with essential hypertension J Am Board Fam Pract 1997 10: 180–184

    CAS  PubMed  Google Scholar 

  113. Pinto-Sietsma S-J et al. Smoking is related to albuminuria and abnormal renal function in non diabetic persons Ann Intern Med 2000 133: 585–591

    CAS  PubMed  Google Scholar 

  114. Michael Pittilo R . Cigarette smoking, endothelial injury and cardiovascular disease Int J Exp Pathol 2000 81: 219–230

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Redon J et al. Microalbuminuria is correlated with left ventricular hypertrophy in male hypertensivepatients J Hypertens 1991 9: S148–S149

    CAS  Google Scholar 

  116. Berrut G et al. Microalbuminurie et hypertrophie ventriculaire gauche au cours de l'hypertension arterielle essentielle La Presse Medicale 1992 21: 1275–1278

    CAS  PubMed  Google Scholar 

  117. Cerasola G et al. Microalbuminuria points out early renal and cardiovascular changes in essential hypertension Rev Lat Cardiol 1992 13: 3–7

    Google Scholar 

  118. Pedrinelli R et al. Microalbuminuria is a marker of left ventricular hypertrophy but not hyperinsulinemia in nondiabetic atheroscleroticpatients Arteriosclerosis 1993 13: 900–906

    CAS  Google Scholar 

  119. Cerasola G et al. Microalbuminuria, renal dysfunction and cardiovascular complication in essential hypertension J Hypertens 1996 14: 915–920

    CAS  PubMed  Google Scholar 

  120. Wu SG, Jung FR, Wei SY, Su CZ . Relationship between microalbuminuria, left ventricular mass and function in essential hypertension Kaohsiung J Med Sci 1998 14: 536–541

    CAS  PubMed  Google Scholar 

  121. Pontremoli R et al. Microalbuminuria is an early marker of target organ damage in essential hypertension Am J Hypertens 1998 11: 430–438

    CAS  PubMed  Google Scholar 

  122. Nilsson T et al. The relations of microalbuminuria to ambulatory blood pressure and myocardial wall thickness in a population J Intern Med 1998 244: 55–59

    CAS  PubMed  Google Scholar 

  123. Pontremoli R et al. Left ventricular geometry and function inpatients with essential hypertension and microalbuminuria J Hypertens 1999 17: 993–1000

    CAS  PubMed  Google Scholar 

  124. Koren MJ et al. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension Ann Intern Med 1991 114: 345–355

    CAS  PubMed  Google Scholar 

  125. Mc Murray J et al. The effect of atrial natriuretic factor on urinary albumin and beta 2-microglobulin excretion in man J Hypertens 1988 6: 783–786

    CAS  Google Scholar 

  126. Nishikimi T et al. Relationship between left ventricular geometry and natriuretic peptide levels in essential hypertension Hypertension 1996 28: 22–30

    CAS  PubMed  Google Scholar 

  127. Vakili BA, Okin PM, Devereux RB . Prognostic implications of left ventricular hypertrophy Am Heart J 2001 141: 334–341

    CAS  PubMed  Google Scholar 

  128. Viberti GC et al. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus Lancet 1982 1: 1430–1432

    CAS  PubMed  Google Scholar 

  129. Mimran A, Ribstein J, DuCailar G . Is microalbuminuria a marker of early intrarenal vascular dysfunction in essential hypertension? Hypertension 1994 23: 1018–1021

    CAS  PubMed  Google Scholar 

  130. Reid M, Bennett F, Wilks R, Forrester T . Microalbuminuria, renal function and waist:hip ratio in black hypertensive Jamaicans J Hum Hypertens 1998 12: 221–227

    CAS  PubMed  Google Scholar 

  131. Mattei P et al. Microalbuminuria and renal hemodynamics in essential hypertension Eur J Clin Invest 1997 27: 755–760

    CAS  PubMed  Google Scholar 

  132. Pontremoli R et al. Increased renal resistive index inpatients with essential hypertension: a marker of target organ damage Nephrol Dial Transplant 1999 14: 360–365

    CAS  PubMed  Google Scholar 

  133. Losito A, Fortunati F, Zampi I, Del Favero A . Impaired renal functional reserve and albuminuria in essential hypertension Br Med J 1988 296: 1562–1564

    CAS  Google Scholar 

  134. Whelton PK, Perneger TV, He J, Klag MJ . The role of blood pressure as a risk factor for renal disease: a review of the epidemiologic evidence J Hum Hypertens 1996 10: 683–689

    CAS  PubMed  Google Scholar 

  135. Halimi JM et al. Effects of current smoking and smoking discontinuation on renal function and proteinuria in the general population Kidney Int 2000 58: 1285–1292

    CAS  PubMed  Google Scholar 

  136. Schmieder RE et al. Predictors for hypertensive nephropathy: results of a 6-year follow-up study in essential hypertension J Hypertens 1995 13: 357–365

    CAS  PubMed  Google Scholar 

  137. Bigazzi R, Bianchi S, Baldari D, Campese VM . Microalbuminuria predicts cardiovascular events and renal insufficiency inpatients with essential hypertension J Hypertens 1998 16: 1325–1333

    CAS  PubMed  Google Scholar 

  138. Susic D, Frohlich ED . Nephroprotective effect of antihypertensive drugs in essential hypertension J Hypertens 1998 16: 555–567

    CAS  PubMed  Google Scholar 

  139. Lydakis C, Efstratopoulos A, Lip GY . Microalbuminuria in hypertension: is it up to measure? J Hum Hypertens 1997 11: 695–697

    CAS  PubMed  Google Scholar 

  140. Dimmitt SB et al. Urine albumin excretion in healthy subjects J Hum Hypertens 1993 7: 239–243

    CAS  PubMed  Google Scholar 

  141. Gorgels WJ et al. Urinary excretions of high molecular weight beta-thromboglobulin and albumin are independently associated with coronary heart disease in women, a nested case-control study of middle-aged women in the Diagnostisch Onderzoek Mammacarcinoom (DOM) Cohort, Utrecht, Netherlands Am J Epidemiol 1995 142: 1157–1164

    CAS  PubMed  Google Scholar 

  142. Beatty OL et al. Microalbuminuria does not predict cardiovascular disease in a normal general practice population Ir J Med Sci 1993 162: 140–142

    CAS  PubMed  Google Scholar 

  143. Jensen JS, Feldt-Rasmussen B, Borch-Johnsen K, Jensen G The Copenhagen City Heart Study Group. Urinary albumin excretion in a population based sample of 1011 middle aged non-diabetic subjects Scand J Clin Lab Invest 1993 53: 867–872

    CAS  PubMed  Google Scholar 

  144. Guest CS, Ratnaike S, Larkins RG . Albuminuria in aborigines and Europids of south-eastern Australia Med J Aust 1993 159: 335–338

    CAS  PubMed  Google Scholar 

  145. Tichet J et al. Epidemiology of microalbuminuria in a French population J Diabetes Complications 1994 8: 174–175

    CAS  PubMed  Google Scholar 

  146. Hoogeveen EK et al. Serum homocysteine level and protein intake are related to risk of microalbuminuria: the Hoorn Study Kidney Int 1998 54: 203–209

    CAS  PubMed  Google Scholar 

  147. Mennen LI et al. Microalbuminuria and markers of the atherosclerotic process: the D.E.S.I.R. study Atherosclerosis 2001 154: 163–169

    CAS  PubMed  Google Scholar 

  148. Diercks GF et al. Microalbuminuria is independently associated with ischaemic electrocardiographic abnormalities in a large non-diabetic population. The PREVEND (Prevention of Renal and vascular Endstage disease) study Eur Heart J 2000 21: 1922–1927

    CAS  PubMed  Google Scholar 

  149. Hwang KK et al. Microalbuminuria in urban Zimbabwean women J Hum Hypertens 2000 14: 587–593

    CAS  PubMed  Google Scholar 

  150. Mykkanen L et al. Microalbuminuria and carotid artery intima-media thickness in nondiabetic and NIDDM subjects. The insulin resistance atherosclerosis study (IRAS) Stroke 1997 28: 1710–1716

    CAS  PubMed  Google Scholar 

  151. Summerson JH, Bell RA, Konen JC . Racial differences in the prevalence of microalbuminuria in hypertension Am J Kidney Dis 1995 26: 577–579

    CAS  PubMed  Google Scholar 

  152. Redon J et al. Ambulatory blood pressure and microalbuminuria in essential hypertension: role of circadian variability J Hypertens 1994 12: 947–953

    CAS  PubMed  Google Scholar 

  153. Agewall S et al. Microalbuminuria in treated men at high risk of coronary disease J Hypertens 1993 11: 461–469

    CAS  PubMed  Google Scholar 

  154. Nelson RG et al. Albuminuria in type 2 (non insulin dependent) diabetes mellitus and impaired glucose tolerance in Pima Indians Diabetologia 1989 32: 870–876

    CAS  PubMed  Google Scholar 

  155. Metcalf PA et al. Microalbuminuria in a middle-aged workforce. Effect of hyperglycemia and ethnicity Diabetes Care 1993 16: 1485–1493

    CAS  PubMed  Google Scholar 

  156. Agabiti-Rosei E et al. Arterial hypertension and heart diseases. Diagnostic-therapeutic guidelines. Joint Commission of the National Association of Hospital Cardiologists, the Italian Society of Cardiology and the Italian Society of Arterial Hypertension Cardiologia 1999 44: 299–312

    CAS  PubMed  Google Scholar 

  157. Lewis EJ et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan inpatients with nephropathy due to type 2 diabetes N Engl J Med 2001 345: 851–860

    CAS  Google Scholar 

  158. Agodoa LY et al. Effect of ramipril vs amlodipine on renal outcomes in hypertensive nephrosclerosis: a randomized controlled trial JAMA 2001 285: 2719–2728

    CAS  PubMed  Google Scholar 

  159. Tarazi RC . Regression of left ventricular hypertrophy by medical treatment: present status and possible implications Am J Med 1983 75: 80–86

    CAS  PubMed  Google Scholar 

  160. Schillaci G et al. Prognostic significance of serial changes in left ventricular mass in essential hypertension Circulation 1998 97: 48–54

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Pedrinelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedrinelli, R., Dell'Omo, G., Di Bello, V. et al. Microalbuminuria, an integrated marker of cardiovascular risk in essential hypertension. J Hum Hypertens 16, 79–89 (2002). https://doi.org/10.1038/sj.jhh.1001316

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001316

Keywords

This article is cited by

Search

Quick links